We Bring Air to Life

 Technical Catalogue > Controls, Switches and Drivers for Demand Control of Fans

AIRTREND Ltd.
Predstavništvo u Beogradu
Kumanovska 14, 11000 Beograd
Tel: 0113836886,3085740
Faks: 0113444113
e-mail: gobrid@eunet.rs
web: www.airtrend.rs

Contents

Controls, Switches and Drivers for Demand Control of Fans

Quick Selection Table - Drives 2
Quick Selection Table - Sensors, Switches \& Controllers 3
Electronic Speed Controllers \& Drives - Single Phase
EEID - Electronic Single Phase Independent Drive 4
EEDS - Electronic Single Phase Demand Switched Drive 6
EEDP - Electronic Single Phase Demand Proportional Drive 8
ME - Electronic Single Phase Classic Drive. 10
Transformer Speed Controllers \& Drives - Single Phase
TEID - Transformer Single Phase Independent Drive 12
TEDS - Transformer Single Phase Demand Switched Drive 14
TEDSD - Transformer Single Phase Demand Switched Dual Speed Drive. 16
TEDP - Transformer Single Phase Demand Proportional Drive. 18
Transformer Speed Controllers \& Drives - Three Phase
TDID - Transformer Three Phase Independent Drive 20
TDDS - Transformer Three Phase Demand Switched Drive. 22
TDDSD - Transformer Three Phase Demand Switched Dual Speed Drive. 24
TDDP - Transformer Three Phase Demand Proportional Drive. 26
Inverter Speed Control \& Drives
IDDXB20 - Inverter Three Phase IP20 Demand Independent, Switched and Proportional Drive - For Tube/Box Fans 28
IDDXF20 - HVAC Inverter Three Phase IP20 Demand Independent, Switched and Proportional Drive - For Axial \& Centrifugal Fans. 30
IDDXF54 - HVAC Inverter Three Phase IP54 Demand Independent, Switched and Proportional Drive - For Axial \& Centrifugal Fans 32
IDDXF66 - HVAC Inverter Three Phase IP66 Demand Independent, Switched and Proportional Drive - For Axial \& Centrifugal Fans 34
IEDXB20 - Inverter Single to Three Phase IP20 Demand Independent, Switched and Proportional Drive - For Tube/Box Fans 36
Isolation Switches
SISO - Safety Isolators/Switch-Disconnectors 38
Sensors \& Switches
SDXT - Room Temperature Sensor/Switch Controller for Demand Proportional \& Switched Drives 40
SDXC - Room CO ${ }^{2}$ Sensor/Switch Controller for Demand Proportional \& Switched Drives 42
SDSI - Room Passive Infrared Switch for Demand Switched Drives (PIR) 45
SDSP54 - Pressure Switch for Demand Switched Drives 46
SDXP54 - Pressure Sensor Controller for Demand Proportional Drives 48
SDPT54 - Room Temperature Sensor Controller for Demand Proportional Drives 51
SDPUSB - USB to Modbus RTU RS485 Connector 54
Potentiometers \& Power Supply
SDPV-10 - Room Potentiometer for Demand Proportional Drives 56
SDPV-230 - Room Potentiometer for Demand Proportional Drives 58
SDXV - Power Supply for Sensors \& Switches 230VAC to 24VDC 60

Quick Selection Table－Drives

		¢	$\begin{aligned} -\frac{1}{1} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{aligned}$							｜c｜c		答	皆	寺	$\begin{array}{\|l\|l} \text { No } \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { d } \\ & \text { d } \end{aligned}$	合	$\begin{array}{\|l\|l} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \text { d } \end{array}$	$\begin{array}{\|l\|l} \hline \\ 0 \\ 0 \\ \vdots \\ \hline \\ \hline \end{array}$	哈	产	刮	$\begin{array}{\|l\|l} \hline 0 \\ 0 \\ 0 \\ 0 \\ \hline \\ \hline \end{array}$		$\begin{array}{\|l\|l} \text { 号 } \\ 0 \\ 0 \\ \vdots \\ \hline \end{array}$	$$					
		¢					$\begin{aligned} & \text { J } \\ & \text { 倍 } \end{aligned}$				¢	N		高	$\begin{array}{\|c} \text { o } \\ \text { d } \\ \text { 弟 } \end{array}$						砤	式				$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ \hline \end{array}$	－				
		¢\％					$\begin{aligned} & \text { 을 } \\ & \text { 咅 } \end{aligned}$			妟	亳	哭	O		$\begin{array}{\|l\|l} \text { 曷 } \\ \vdots \\ 0 \\ 8 \\ \hline \end{array}$		$\begin{aligned} & \hat{8} \\ & \frac{8}{\delta} \\ & \text { 岕 } \end{aligned}$	$\begin{array}{\|l\|l} \hline 0 \\ 0 \\ \vdots \\ 0 \\ \hline \end{array}$	g 8 \vdots 号	$\begin{array}{\|c} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & \bar{j} \\ & \vdots \\ & \vdots \\ & \text { duw } \end{aligned}$	$\begin{array}{\|c} \text { N } \\ \vdots \\ \vdots \\ \vdots \\ \text { d } \end{array}$									
				ㅁ				$\begin{aligned} & \text { O} \\ & \text { 义 } \\ & \text { on } \end{aligned}$			$\begin{aligned} & \text { y } \\ & \text { O} \\ & \vdots \\ & \text { dy } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 䇾 } \\ & \mathbf{0} \\ & \underset{y}{2} \end{aligned}$			$\begin{array}{\|l\|l} 0 \\ 0 \\ \vdots \\ 0 \\ \text { did } \end{array}$	$\begin{aligned} & \hat{o} \\ & \vdots \\ & \dot{d} \\ & \text { di } \end{aligned}$		$\begin{aligned} & \text { 导 } \\ & \vdots \\ & \vdots \\ & \text { did } \\ & \hline \end{aligned}$													
								）unoo sduv		$\stackrel{\sim}{\square}$	～～	¢	m	$\stackrel{\sim}{\sim}$	Oio	$\begin{array}{\|l\|l} \hline \stackrel{\text { ® }}{\sim} \end{array}$	$\begin{aligned} & \text { n } \\ & \stackrel{n}{\circ} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { on } \\ \text { min } \end{array}$	$\begin{array}{\|l\|} \hline \stackrel{\circ}{\dot{m}} \\ \hline \end{array}$	$\stackrel{\stackrel{\rightharpoonup}{n}}{\stackrel{1}{2}}$	$$	ธ	¢	8	$\stackrel{\square}{\square}$	F	ミ				
											$\begin{aligned} & \text { ơ } \\ & \text { M } \\ & \text { out } \end{aligned}$			$\begin{array}{\|l} \hline 0 \\ 0 \\ 0 \\ 0 \\ 8 \\ \hline \end{array}$	$\begin{array}{\|c} \overline{8} \\ \vdots \\ \vdots \\ \vdots \\ \hline \end{array}$		$\begin{aligned} & \text { on } \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \\ & \hline \end{aligned}$														
									ทuov כר）sduv		$\stackrel{\sim}{\square}$	ヘ	$\stackrel{\text { ̛ }}{+}$	$\stackrel{\infty}{\infty}$	$\stackrel{0}{\circ}$																
						$\begin{aligned} & 1 \\ & 1 \end{aligned}$		佥	：	苞	$\begin{aligned} & \hat{8} \\ & \text { O} \\ & 0 \\ & 8 \\ & 4 \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 8 \\ & 0 \\ & 0 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ơ } \\ & \text { O} \\ & 0 \\ & \text { d } \end{aligned}$	$\begin{aligned} & \text { 苟 } \\ & \text { O} \\ & \text { div } \end{aligned}$																	
								$\begin{aligned} & \text { 品 } \\ & \text { 品 } \end{aligned}$	00^{0}	苞				$\begin{aligned} & \text { op } \\ & 0 \\ & 0 \\ & \text { O} \\ & \text { d } \end{aligned}$																	
								呙	$\left(\begin{array}{l}0 \\ 0\end{array}\right.$	䔡	$\begin{array}{\|l} \hline \text { og } \\ \text { O} \\ \text { O} \\ \text { W } \end{array}$	$\begin{array}{\|l} \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$																			
								을	$\left(\begin{array}{ll}0 \\ 0\end{array}\right.$	苞	造	吅	珨	$\begin{aligned} & \text { on } \\ & \tilde{0} \\ & \text { O} \\ & \underset{4}{4} \end{aligned}$																	
									）uoכ כרנ）sduv		パ	$\stackrel{\square}{\square}$	${ }_{\circ}^{\circ}$	$\stackrel{0}{\sim}$																	
				出				号	［ i			－	O	$\begin{aligned} & \text { 듬 } \\ & \text { O} \\ & \text { 岕 } \end{aligned}$			式														
						$\stackrel{\text { 苟 }}{\text { ¢ }}$	$0 \cdot\left(\begin{array}{ll}0 \\ 1 & 0\end{array}\right)$		．	年	者	$\begin{aligned} & \text { n } \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} \hline 0 \\ \vdots \\ 0 \\ 0 \\ \hline \\ \hline \end{array}$	$\begin{array}{\|c} \hat{\delta} \\ \text { on } \\ \text { din } \end{array}$	¢																
			$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{2} \\ & \frac{2}{3} \\ & 0 \end{aligned}$			号	0	（	．																						
						号	0	产		$\begin{aligned} & \bar{\delta} \\ & \mathbf{8} \\ & \mathbf{O} \\ & \underset{4}{4} \end{aligned}$			$\begin{aligned} & \text { I } \\ & \text { O} \\ & \text { O} \\ & \text { d } \end{aligned}$																		
									$\stackrel{\square}{-}$	$\stackrel{セ}{\sim}$	ヘั	$\stackrel{n}{\text { cio }}$	－	$\stackrel{n}{\sim}$	¢																
				$-\left\lvert\, \begin{gathered} N \\ ⿳ 亠 口 冋 \end{gathered}\right.$					合	$\int \square$				旡			苟														
									吕			．		碞	．	䓂	哭														
									咄		䓂	蒿	或		碞																
			（snonu！̣uos כרไ）sduv							－	๙	¢	\checkmark	\bullet	\bigcirc																
					$\begin{aligned} & \frac{y}{0} \\ & \frac{0}{0} \\ & \hline \end{aligned}$		\bigcirc			$\begin{aligned} & \overline{\mathrm{o}} \\ & \stackrel{0}{\mathrm{D}} \end{aligned}$		옹																			

Quick Selection Table－Sensors

	盾	$\stackrel{\varrho}{0}$						
	$\begin{aligned} & \text { ơ } \\ & \text { N } \\ & \text { O} \\ & 0 \end{aligned}$	$\begin{aligned} & \ddagger \\ & \stackrel{y}{2} \\ & \underset{』}{f} \end{aligned}$			＞	＞	＞	\ggg＞
	$\underset{\substack{0 \\ 0 \\ 0 \\ 0}}{ }$	$\begin{aligned} & \text { f } \\ & \ddagger \\ & \ddagger \end{aligned}$			＞	＞	＞	\ggg＞
		－		$\begin{aligned} & \text { N } \\ & \text { ٓ̈ } \\ & \text { OX } \\ & \hline \end{aligned}$				
	$\begin{aligned} & \text { 槀 } \\ & \stackrel{0}{0} \end{aligned}$	皆			＞	＞	＞	\ggg＞
	$\begin{aligned} & \text { H } \\ & \text { 荅 } \\ & 0 \end{aligned}$	皆			＞	＞	＞	\ggg＞
	$\begin{aligned} & \text { f } \\ & 0 . \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\text { 皆 }}{\text {－}}$			\gg	\ggg	\ggg	\ggg＞
	硆	－			\gg	＞＞＞	\ggg	\ggg＞
	茄	－			\gg	＞＞＞	\ggg	＞＞＞＞
	玄	－		8 ¢ O ¢	\gg	\ggg	\ggg	\ggg＞
$\begin{aligned} & \text { en } \\ & \stackrel{0}{0} \\ & \frac{0}{0} \\ & \frac{0}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\omega}{\omega} \\ & 0 \end{aligned}$	号	¢			邑 邑 亮	㗊 䓃 品 㙜		
	产	$\stackrel{\text { ¢ }}{\stackrel{\text { ¢ }}{\text { ¢ }}}$	абеш｜	suaqunn wied				

EEID - Electronic Single Phase
 Independent Drive

Features

- Independent control of fan speed. Infinitely variable from max to min with off position
- Supply 230 VAC, $50 / 60 \mathrm{~Hz}, 1$ Phase
- IP54 Surface \& IP44 Inset ingress protection rating
- Two \& Three wire control
- Clear indication light
- Commissioning adjustable minimum speed pre-set to 20% via internal potentiometer
- Fuse $5^{*} 20 \mathrm{~mm}$, spare included
- RAL9010 white ivory enclosure and face. Internal polyamide.
- Max ambient temperature: $50^{\circ} \mathrm{C}$

Description

The compact units of the EEID series control the speed of single phase voltage controllable motors ($230 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$) by varying the supplied voltage via optotriac phase angle control.

An LED indicates operational status with the hand controlled dial providing infinitely variable and off positioning.
Suitable for inset or surface mounting with the splash-resistant housing provided.

A safety isolator/switch disconnector should be installed on the mains side of all motor drives;

Range

For selection of the drive current rating choose a controller model with a current rating equal to or above the fan full load current (FLC). If the motor is fitted with thermostat (Tk) overheat protection we recommend the EEDS controller range to enable this function.

Wiring Diagram

MODEL	EEID1A	EEID2A	EEID4A
PART	EA900100	EA900101	EA900102
CURRENT RATING (A)	$0.1-1.0$	$0.2-2$	$0.4-4$
FUSE (A) 5*20MM	F1.25A H	F2.5A H	F5.0A H
INGRESS PROTECTION	IP44/54	IP44/54	IP54*

*Surface mount only

1 - Power supply 230 VAC, 50 Hz
2-230 VAC non-regulated output for connecting valve, dampers or three wire motor connection
N-Neutral
3 - Regulated output to motor
4 - Fuse holder with spare
5 - Minimum speed adjustment trimmer (pre-set to 20%)
6 - Control light

Dimensions \& Weights

MODEL	EEID1A	EEID2A	EEID4A
PART	EA900100	EA900101	EA900102
NET WEIGHT (G)	210	215	300
GROSS WEIGHT (G)	235	240	325

Mounting Instructions

EEID electronic fan speed controller for single phase voltage controllable motors.

Inset mounting (IP 44)
Break (Isolate) mains voltage. Connect according to diagram. Mount inner case to the wall with connections pointing down. Turn on mains voltage and controller. Adjust min. speed with insulated screwdriver and turn off controller. Mount cover with nut to the wall. Push knob in place at off position.

Surface mounting (IP 54)
Break (Isolate) mains voltage. Mount surface mounting case to the wall together with included grommets. Connect according to diagram. Turn on mains voltage and controller. Adjust min. speed with insulated screwdriver and turn off controller. Mount cover with nut to surface mounting case. Push knob in place at off position.

Adjustment
Trimmer (MIN) - Adjust with insulated screwdriver so that the motor does not stop due to variations of mains voltage and that it restarts after power failure.

Wiring (see previous page)
A safety isolator/switch disconnector should be installed on the mains side of all motor drives; refer to SISO.

We recommend three wire control for increased speed stability and low speed starting.

Change of fuse
Break (Isolate) mains voltage. Undo knob by first turning the knob to the right beyond end stop and then pull. Remove the nut. Remove fuse holder with a screwdriver. Change fuse. Put the details back in place. Use only recommended fuses (Approved, fast, with high breaking capacity).

Motor protection
If motors are fitted with thermostat (Tk) overheat protection it is recommended to use the EEDS range to utilise this feature.

Warranty
Two years from delivery date against defects in manufacturing. Any modifications or alterations to the product relieve the manufacturer of all responsibility. The manufacturer bears no responsibility for any misprints or mistakes in this data, and modifications or improvements to the product can be made at any time after date of publication.

Maintenance

In normal conditions the controllers are maintenance-free. If soiled clean with dry or damp cloth. In case of heavy pollution clean with a non-aggressive product. In these circumstances the controller should be disconnected from the mains. Pay attention that no fluids enter the controller. Only reconnect the controller to the mains when it is completely dry.

General danger

Electrical hazard

All works may only be carried out by skilled personnel following the local regulations and AFTER the controller is completely separated from the mains. Replace fuse only with same type and rating.

EEDS - Electronic Single Phase
 Demand Switched Drive

Features

- Switched control of fan speed. Infinitely variable from max to min with on/off switch
- Supply: $230 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}, 1$ Phase
- IP 54 ingress protection
- In built motor overheat protection via motor thermostats (Tk)
- BMS enable/disable (Fault via Tk)
- Two \& Three wire control
- Switched input / startup to front dial setting/ kick start: 6-7 sec. full speed
- Minimum and maximum speed setting trimmers
- Plastic enclosure (R-ABS, UL94-V0, grey RAL 7035), IP 54
- Max ambient temperature: $50^{\circ} \mathrm{C}$

Description

The electronic speed controllers of the EEDS series control the speed of single phase voltage controllable motors ($230 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$) by varying the supplied voltage.

The controller has connections for motors equipped with thermostat (Tk) overheat protection (NC-contact). When overheating is detected power to the motor is stopped. The red indicator light and alarm output will signal this error condition (reset: main switch to off position and back).

The working principle of this product series is based on zero crossing detection. An optotriac combined with a microprocessor ensures flawless and accurate control.

OC (open contact - normal mode) and CC (closed contact - normal mode) inputs are provided for remote starting and stopping via thermostats, PIR and/or frost protection, etc.

There is a potentiometer and a separate on/off switch with built-in illumination. The terminal board has a supplementary connection to branch off non-controlled 230 V .

A safety isolator/switch disconnector should be installed on the mains side of all motor drives; refer to SISO.

Range

For selection of the drive current rating choose a controller model with a current rating equal to or above the fan full load current (FLC). If the motor is fitted with thermostat (Tk) overheat protection we recommend the EEDS controller range to enable this function.

MODEL	EEDS3A	EEDS6A	EEDS1OA
PART	EA900103	EA900104	EA900105
CURRENT RATING (A)	$0.1-3.0$	$0.5-6.0$	$0.5-10.0$
FUSE (A) 5*20MM	F5 A-H	F8 A-H	F14 A-H (6X32)
INGRESS PROTECTION	IP54	IP54	IP54

Wiring Diagram

L-N - Power supply 230 VAC, 50 Hz , 1 Phase
Pe - Power earth
L1-N - 230 VAC non-controlled outputs
OC - Normal open contact, thermostat, timer, frost protection, PIR, BMS remote on/off
CC - Normal closed contact (inverse logical)
N-AL - Alarm output in case of motor fault 230 VAC, 0,6 A (150 W)
TK - Connection for motor thermostat over heat protection. Can be used for BMS fault.
M-N - Motor connection
Min. speed - from 70 to 150 V - Pre-set 20\%
Max. speed - from 170 to 230 V - Pre-set 100%

Dimensions \& Weights

MODEL	A	B	C	D	E	Net g	Gross g
EEDS3A	83	160	66	71	108	420	440
EEDS6A	113	178	92	102	140	675	765
EEDS10A	113	178	92	102	140	650	740

Mounting Instructions

Speed controller for voltage controllable single phase motors
Mounting
Break (Isolate) mains voltage. The controllers are to be mounted on a smooth surface. Connect voltage supply, motor(s) and earth as shown in the wiring diagram with cables of the proper diameter.

1. Break (Isolate) mains voltage \& be sure that the controller is in OFF position.
2. Take off the box cover by loosening the four screws. Note that the potentiometer is connected to the PCB with two wires.
3. Connect mains, motor(s) and earth cables of the proper diameter to the terminals according to the wiring diagram.
4. Start the controller and with insulated screwdriver adjust the minimum speed: with the potentiometer at minimum, adjust the trimmer so that the motor continues running or restarts smoothly in case of power faults. The minimum speed is factory pre-set at 20% speed.
5. Close the box and verify the installation.
6. When reconnecting mains voltage if the green LED is flashing the connector for the external trimmer is unplugged.

Wiring (see previous page)
If TK-TK is not operational: Link TK-TK
A safety isolator/switch disconnector should be installed on the mains side of the drive; refer to SISO.

We recommend three wire control for increased speed stability and low speed starting.

Transport and stock keeping
Avoid shocks. Store in original packing. Avoid extreme conditions.
Warranty
Two years from delivery date against defects in manufacturing. Any modifications or alterations to the product relieve the manufacturer of all responsibility. The manufacturer bears no responsibility for any misprints or mistakes in this data, and modifications or improvements to the product can be made at any time after date of publication.

Maintenance
In normal conditions the controllers are maintenance-free. If soiled clean with dry or damp cloth. In case of heavy pollution clean with a non-aggressive product. In ALL circumstances
the controller should be disconnected from the mains. Pay attention that no fluids enter the controller. Only reconnect the controller to the mains when it is completely dry.

Motor protection
For use with motors fitted with thermostat (Tk) (NC contact) overheat protection.

All works may only be carried out by skilled personnel following the local regulations and AFTER the controller is completely separated from the mains. Replace fuse only with same type and rating.

EEDP - Electronic Single Phase
 Demand Proportional Drive

Features

- Proportional control of fan speed via 0-10VDC control signal with on/off switch
- Supply: 230 VAC, $50 / 60 \mathrm{~Hz}, 1$ Phase
- IP54 ingress protection
- In built motor overheat protection via motor thermostat (Tk). Can be used for BMS fault.
- Two \& Three wire control
- BMS enable/disable (Fault via Tk)
- Control signal input: 0-10 VDC Supply: 12 VDC e.g. CO_{2}, pressure and temperature sensor
- Minimum and maximum speed setting trimmers
- Plastic enclosure (R-ABS, UL94-V0, grey RAL 7035), IP 54
- Max ambient temperature: $50^{\circ} \mathrm{C}$

Description

The EEDP automatically controls the speed of single phase (230 VAC , $50 / 60 \mathrm{~Hz}$) voltage controllable electric motor with a $0-10 \mathrm{VDC}$ or $0-20$ mA control signal. It is possible to invert the control signal to $10-0 \mathrm{VDC}$, $20-0 \mathrm{~mA}$.

An illuminated external power switch is provided.
A supplementary terminal block is provided to branch off 230 VAC noncontrolled for 3-wire motor connection or damper operation.

The working principle of this product series is based on zero crossing detection. An optotriac combined with a microprocessor ensures flawless and accurate control.

A kick star feature is selectable internally to start the motor for 10 sec at maximum speed.

The EEDP controllers have inbuilt connections for thermostat (Tk) motor protection (NC-contact). When the motor thermostats open, because of motor overheating, the circuit is broken and the controller stops power to the motor. After eliminating the cause of overheating the fan can be restarted by turning off the controller for a few moments.

A safety isolator/switch disconnector should be installed on the mains side of all motor drives; refer to SISO.

Range

For selection of the correctly current rated drive select the model with a current rating equal to or above the fan full load current (FLC).

MODEL	EEDP3A	EEDP6A	EEDP1OA
Part	EA900106	EA900107	EA900108
Current rating (A)	$0.1-3.0$	$0.5-6.0$	$0.5-10.0$
Fuse (A) 5*20mm	F5 A-H	F10. A-H	F16 A-H (6x32)
Ingress Protection	IP54	IP54	IP54

Wiring Diagram

Calculation formula
V out $=((V$ in $/ 10) *(V$ max- $-V$ min $))+V$ min $\quad V$ out $=(((V$ in-OFF-level $) /(10-O F F-l e v e l)) *(V$ max- V min $))+V$ min

M

L - Mains supply 230 VAC, 50 Hz
N - Neutral
L1-230 VAC unregulated output (Imax 2 A)
Earth - Terminal (only for 3, 6 \& 10 A)
M - Regulated output to motor
TK - Connections for motor thermostat (Tk) overheat protection. Can be used for BMS fault.
N AL - Alarm output 230 VAC, 1 A
Sw - Switch BMS enable/disable (Fault via Tk)
GND - Control Ground
UI - Control signal 0-10 VDC (input impedance 90 kOhm)
I - 0-20 mA (input impedance 250 Ohm)
+V - Low voltage power supply: $12 \mathrm{VDC}, 1 \mathrm{~mA}$ for external potentiometer
Sw1 - Switch down $=0-10 \mathrm{~V}$, up $=10-0 \mathrm{~V}$
Sw2 - Switch down = disable off-level, up = enable off-level
Sw3 - Switch down = disable kick-start, up = enable kick-start
Sw4 - Switch down $=0-20 \mathrm{~mA}$, up $=0-10 \mathrm{~V}$ (select current/voltage)
PT1 - Max. speed adjustment trimmer, range: $165-230 \mathrm{~V}$
PT2 - Min. speed adjustment trimmer, range: $60-160 \mathrm{~V}$
PT3 - Off-level adjustment trimmer: 0-4 V or 10-6 V (depending on Sw1)
LED green: Normal operation. blinking: standby (input signal < off level).
red: motor overheated (reset device by turning off and on again)

Dimensions \& Weights

MODEL	A	B	C	D	E	Net g	Gross g
EEDP3A	113	178	92	102	140	700	815
EEDP6A	113	178	92	102	140	860	975
EEDP10A	113	178	92	102	140	860	975

Mounting Instructions

Speed controller for single phase voltage controllable motors.

Mounting

Break (Isolate) mains voltage. The controllers are to be mounted on a smooth surface. Connect voltage supply, motor(s) and earth as shown in the scheme with cables of the proper diameter.

Wiring (see diagram on previous page)
If TK-TK is not operational: Link TK-TK
A safety isolator/switch disconnector should be installed on the mains side of the drive; refer to SISO.

We recommend three wire control for increased speed stability and low speed starting.

Transport and stock keeping
Avoid shocks. Stock in original packing. Avoid extreme conditions.

Motor protection
Connections provided for motors with thermostat (Tk) overheat protection (NC contacts).

Warranty

Two years from delivery date against defects in manufacturing. Any modifications or alterations to the product relieve the manufacturer of all responsibility. The manufacturer bears no responsibility for any misprints or mistakes in this data, and modifications or improvements to the product can be made at any time after date of publication.

Maintenance

In normal conditions the controllers are maintenance-free. If soiled clean with dry or damp cloth. In case of heavy pollution clean with a non-aggressive product. In these circumstances
the controller should be disconnected from the mains. Pay attention that no fluids enter the controller. Only reconnect the controller to the mains when it is completely dry.

All works may only be carried out by skilled personnel following the local regulations and AFTER the controller is completely separated from the mains. Replace fuse only with same type and rating.

ME - Electronic Single Phase

Features

- Classic control of fan speed. Infinitely variable with illuminated on/off switch
- Supply: 230 VAC, $50 / 60 \mathrm{~Hz}, 1$ Phase
- IP44 ingress protection
- Three wire control
- Infinitely variable voltage controller
- Max ambient temperature: $50^{\circ} \mathrm{C}$

Description

The Classic ME series of drives provide speed control of single phase, 230 VAC, $50 / 60 \mathrm{~Hz}$ voltage controllable electric motors.

Available in 1, 3, 6 and 12 Amp units they have an illuminated on/ off switch and infinitely variable control to minimum and maximum speeds.

A safety isolator/switch disconnector should be installed on the mains side of all motor drives; refer to SISO.

Range

For selection of the correctly current rated drive select the model with a current rating equal to or above the fan full load current (FLC).

Model	ME1.1	ME1.3	ME1.6	ME1.12
Part	410289	410290	410291	414855
Current rating (A)	1	3	6	12
Ingress Protection	$\mathbb{P 4 4}$	$\mathbb{P P 4 4}$	$\mathbb{P 4 4}$	$\mathbb{P} 44$

Wiring Diagram

CD2249

* Add link between terminal UZ and K if three wire control is required.

Dimensions \& Weights

Model	A	B	C	D	Net g	Gross g
ME1.1	104	83	40	15	375	425
ME1.3	148	87	47	15	400	450
ME1.6	148	87	47	15	425	475
ME1.12	210	180	65	16	500	550

Mounting Instructions

Speed controller for single phase voltage controllable motors.

Mounting

Break (Isolate) mains voltage. The controllers are to be mounted on a smooth surface. Connect voltage supply, motor(s) and earth as shown in the scheme with cables of the proper diameter.

Wiring (see diagram on previous page)
A safety isolator/switch disconnector should be installed on the mains side of the drive; refer to SISO.

We recommend three wire control for increased speed stability and low speed starting.

Motor protection
If motors are fitted with thermostat (Tk) overheat protection it is recommended to use the EEDS range to utilise this feature.

Transport and stock keeping
Avoid shocks. Stock in original packing. Avoid extreme conditions.
Warranty
Two years from delivery date against defects in manufacturing. Any modifications or alterations to the product relieve the manufacturer of all responsibility. The manufacturer bears no responsibility for any misprints or mistakes in this data, and modifications or improvements to the product can be made at any time after date of publication.

Maintenance

In normal conditions the controllers are maintenance-free. If soiled clean with dry or damp cloth. In case of heavy pollution clean with a non-aggressive product. In these circumstances the controller should be disconnected from the mains. Pay attention that no fluids enter the controller. Only reconnect the controller to the mains when it is completely dry.

All works may only be carried out by skilled personnel following the local regulations and AFTER the controller is completely separated from the mains. Replace fuse only with same type and rating.

Transformer Speed Controllers \& Drives - Single Phase TEID - Transformer Single Phase
 Independent Drive

Features

- Independent transformer 5 step speed control for fans with off position
- Supply: 230 VAC, $50 / 60 \mathrm{~Hz}, 1$ Phase
- IP54 ingress protection
- Switch: 5 positions with offposition
- Indicator light
- Current fuse
- 230 VAC unregulated output
- Ready mounted cable glands
- Enclosure: plastic (R-ABS, UL94-V0, grey RAL 7035) or sheet steel (RAL 7035)
- Max ambient temperature: $50^{\circ} \mathrm{C}$

Description

The TEID transformer speed controllers are based on the principle of voltage control with autotransformers. They are applicable to single phase voltage controllable motors $(230 \mathrm{~V}, 50 / 60 \mathrm{~Hz})$ to control the rotational speed of fans in five steps.

A safety isolator/switch disconnector should be installed on the mains side of all motor drives; refer to SISO.

Range

For selection of the correctly current rated drive select the model with a current rating equal to or above the fan full load current (FLC).

Model	TEID1A	TEID1.5A	TEID2.2A	TEID3.5A	TEID5A	TEID7.5A	TEID13A
Part	EA900000	EA900001	EA900002	EA900003	EA9000004	EA900005	EA900006
Lmax (A)	1	1.5	2.2	3.5	5	7.5	13
Fuse (A)	1.25	2.5	3.15	5	8	10	20
IP Rate	IP54						

Wiring Diagram

Internally exchanging the faston clip connectors on the transformer, one can adjust the order of switching and the voltage corresponding to each step of the switch. Factory defaults:

VOLTAGE TAP	0	80	110	140	170	190	230
SWITCH POSITION		1	2	3	4	5	

L-N - Power supply 230 VAC, $50 / 60 \mathrm{~Hz}$
L1 N1 - Unregulated output 230 VAC (2 A)
$\mathrm{N}-\mathrm{U}$ - Motor connection
Pe - Earth connections

TEID1A

TEID1.5A-2.2A

TEID3.5A-13A

Dimensions \& Weights

Model	A	B	C	D	E	Net kg	Gross kg	Enclosure
TEID1A	84	160	88	71	108	1.2	1.3	Plastic
TEID1.5A	115	205	100	98	140	1.9	2.1	Plastic
TEID2.2A	115	205	100	98	140	2.1	2.3	Plastic
TEID3.5A	170	255	140	155	194	4.5	4.7	Plastic
TEID5A	170	255	140	155	194	5	5.4	Plastic
TEID7.5A	200	305	140	183	236	7.6	8	Plastic
TEID13A	300	185	185	255	255	14.8	15.3	Steel

Mounting Instructions

Speed controller for single phase voltage controllable motors.

Mounting

Break (Isolate) mains voltage. The controllers are to be mounted on a smooth surface. Connect voltage supply, motor(s) and earth as shown in the scheme with cables of the proper diameter.

Wiring (Refer to diagram previously shown)
A safety isolator/switch disconnector should be installed on the mains side of all motor drives; refer to SISO.

Motor protection
If motors are fitted with thermostat (Tk) overheat protection it is recommended to use the TEDS range to utilise this feature.

Transport and stock keeping
Avoid shocks and extreme conditions. Stock in original packing.
Warranty
Two years from delivery date against defects in manufacturing. Any modifications or alterations to the product relieve the manufacturer of all responsibility. The manufacturer bears no responsibility for any misprints or mistakes in this data, and modifications or improvements to the product can be made at any time after date of publication.

Maintenance

In normal conditions the controllers are maintenance-free. If soiled clean with dry or damp cloth. In case of heavy pollution clean with a non-aggressive product. In these circumstances
the controller should be disconnected from the mains. Pay attention that no fluids enter the controller. Only reconnect the controller to the mains when it is completely dry.

All works may only be carried out by skilled personnel following the local regulations and AFTER the controller is completely separated from the mains. Replace fuse only with same type and rating.

TEDS - Transformer Single Phase
 Demand Switched Drive

Features

- Switched control of fan speed. Five steps with off position
- Supply: 230 VAC, $50 / 60 \mathrm{~Hz}, 1$ Phase
- IP54 ingress protection
- In built motor overheat protection via motor thermostats (Tk). Can be used for BMS fault.
- Switch: 5 positions with offposition
- BMS enable/disable (BMS fault via Tk)
- Indicator lights, on/fault
- Current fuse
- Auto reset after supply failure
- Run/stop contacts (CC - normally closed, CO - normally open, for thermostat/frost protection, PIR, BMS Enable/Disable)
- Ready mounted cable glands
- Enclosure: plastic (R-ABS, UL94-V0, RAL 7035); steel (RAL 7035, polyester powder coating)
- Maximum ambient temperature: $50^{\circ} \mathrm{C}$

Description

The TEDS transformer speed controllers are based on the principle of voltage control with auto-transformers. They are applicable to single phase voltage-controllable motors ($230 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$) to control the rotational speed of fans in five steps.

They are fitted with contacts for motor thermostat (Tk) overheat protection (NC contacts). OC and CC inputs are provided for remote starting and stopping via thermostats, PIR and/or frost protection, etc.

A safety isolator/switch disconnector should be installed on the mains side of all motor drives; refer to SISO.

Range

For selection of the correctly current rated drive select the model with a current rating equal to or above the fan full load current (FLC).

Model	TEDS1.5A	TEDS2.5A	TEDS3.5A	TEDS5A	TEDS7.5A	TEDS13A
Part	EA900007	EA900008	EA900009	EA900010	EA9000011	EA900012
Lmax (A)	1.5	2.5	3.5	5.0	7.5	13
Fuse (A)	2.5	4	5	8	12.5	20
IP Rate	IP54	IP54	IP54	IP54	IP54	IP54

Wiring Diagram

Internally exchanging the faston clip connectors on the transformer, one can adjust the order of switching and the voltage corresponding to each step of the switch. Factory defaults:

VOLTAGE TAP	0	80	110	140	170	190	230
SWITCH POSITION		1	2	3	4	5	

TEDS1.5A-7.5A
L-N - Power supply 230 VAC, $50 / 60 \mathrm{~Hz}$
L1 - Unregulated output 230 VAC (2 A)
M-N - Motor connection
CC - Contact normally closed
OC - Contact normally open
TK - Connection for motor thermostat. Can be used for BMS fault.
N-AL - Alarm output (1 A)
Pe - Earth connections

TEDS1.5A-7.5A

TEDS13A

Dimensions \& Weights

Model	A	B	C	D	E	Net kg	Gross kg	Enclosure
TEDS1.5A	170	255	140	155	194	3.6	3.9	Plastic
TEDS2.5A	170	255	140	155	194	3.6	3.9	Plastic
TEDS3.5A	170	255	140	155	194	4.6	4.9	Plastic
TEDS5A	170	255	140	155	194	5.6	5.9	Plastic
TEDS7.5A	200	305	155	183	236	8.3	8.7	Plastic
TEDS13A	300	325	185	255	255	16.4	16.9	Steel

Mounting Instructions

Speed controller for single phase voltage controllable motors.

Mounting

Break (Isolate) mains voltage. The controllers are to be mounted on a smooth surface. Connect voltage supply, motor(s) and earth as shown in the scheme with cables of the proper diameter.

Wiring (see diagrams)
If TK-TK is not operational: Link TK-TK
A safety isolator/switch disconnector should be installed on the mains side of all motor drives; refer to SISO.

Transport and stock keeping
Avoid shocks. Stock in original packing. Avoid extreme conditions.
Warranty
Two years from delivery date against defects in manufacturing. Any modifications or alterations to the product relieve the manufacturer of all responsibility. The manufacturer bears no responsibility for any misprints or mistakes in this data, and modifications or improvements to the product can be made at any time after date of publication.

Maintenance
In normal conditions the controllers are maintenance-free. If soiled clean with dry or damp cloth. In case of heavy pollution clean with a non-aggressive product. In these circumstances
the controller should be disconnected from the mains. Pay attention that no fluids enter the controller. Only reconnect the controller to the mains when it is completely dry.

Motor protection
The TEDS are fitted with contacts for motor thermostat (Tk) overheat protection. When motor contacts open due to motors overheating, the circuit is broken and the controller stops the power to the motor. Reset by putting the switch in the "Off"position.

All works may only be carried out by skilled personnel following the local regulations and AFTER the controller is completely separated from the mains. Replace fuse only with same type and rating.

TEDSD - Transformer Single Phase
 Demand Switched Dual Speed Drive

Features

- Switched control of fan speed between two speeds. Five steps with off position
- Supply: $230 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}, 1$ Phase
- IP54 ingress protection
- In built motor overheat protection via motor thermostats (Tk). Can be used for BMS fault
- Switch: 5 positions with offposition \& low/high
- BMS enable/disable
- Indicator light
- Run/stop contacts (CC - normally closed, OC -normally open) for PIR, thermostat etc.
- Enclosure: sheet steel (RAL 7035) / plastic (R-ABS, UL94-V0, RAL 7035)
- Maximum ambient temperature: $50^{\circ} \mathrm{C}$

Description

The TEDSD transformer speed controllers are based on the principle of voltage control with auto-transformers. They are applicable to voltagecontrollable single phase motors ($230 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$) to control the rotational speed of fans.

The TEDSD makes it possible to select two optimal motor speeds and to switch between these with a contact. Important energy savings and an increase of comfort can be realised e.g. through day/night, PIR, thermostat control.

The control is fitted with contacts for motor thermostat (Tk) overheat protection. Run/stop contacts (CC-closed/OC-open) for external or remote starting/stopping are also provided.

A safety isolator/switch disconnector should be installed on the mains side of all motor drive; refer to SISO.

Range

For selection of the correctly current rated drive select the model with a current rating equal to or above the fan full load current (FLC).

Model	TEDSD1.5A	TEDSD2.5A	TEDSD3.5A	TEDSD5A	TEDSD7.5A	TEDSD13A
Part	EA900013	EA900014	EA900015	EA900016	EA9000017	EA900018
Lmax (A)	1.5	2.5	3.5	5.0	7.5	13
Fuse (A)	FT2.5	FT4	FT5	FT8	FT12.5	FT20
IP Rate	IP54	IP54	IP54	IP54	IP54	IP54

Wiring Diagram

L-N - Power supply 230 VAC, $50 / 60 \mathrm{~Hz}$
L1 - Unregulated output 230 VAC (2 A)
$\mathrm{M}-\mathrm{N}$ - Motor connection
CC - Contact normally closed
OC - Contact normally open
TK - Connection for motor thermostat. Can be used for BMS fault. N -AL - Alarm output (1 A)
Pe - Earth connections

Dimensions \& Weights

Model	A	B	C	D	E	Net kg	Gross kg	Enclosure
TEDSD1.5A	200	305	155	183	235	3.9	4.3	Plastic
TEDSD2.5A	200	305	155	183	235	4.4	4.8	Plastic
TEDSD3.5A	200	305	155	183	235	5.4	5.8	Plastic
TEDSD5A	200	305	155	183	235	6.2	6.5	Plastic
TEDSD7.5A	200	305	155	183	235	8.2	8.5	Plastic
TEDSD13A	300	425	175	255	355	17.6	18	Steel

Mounting Instructions

Speed controller for single phase voltage controllable motors.
Mounting
Break (Isolate) mains voltage. The controllers are to be mounted on a smooth surface. Connect voltage supply, motor(s) and earth as shown in the scheme with cables of the proper diameter.

Wiring (see diagrams)
If TK-TK is not operational: Link TK-TK
A safety isolator/switch disconnector should be installed on the mains side of all motor drives; refer to SISO.

Transport and stock keeping
Avoid shocks. Stock in original packing. Avoid extreme conditions.

Warranty

Two years from delivery date against defects in manufacturing. Any modifications or alterations to the product relieve the manufacturer of all responsibility. The manufacturer bears no responsibility for any misprints or mistakes in this data, and modifications or improvements to the product can be made at any time after date of publication.

Maintenance
In normal conditions the controllers are maintenance-free. If soiled clean with dry or damp cloth. In case of heavy pollution clean with a non-aggressive product. In these circumstances the controller should be disconnected from the mains. Pay attention that no fluids enter the controller. Only reconnect the controller to the mains when it is completely dry.

Motor protection
The TEDS are fitted with contacts for motor thermostat (Tk) overheat protection. When motor contacts open due to motors overheating, the circuit is broken and the controller stops the power to the motor. Reset by putting the switch in the "Off"postion.

All works may only be carried out by skilled personnel following the local regulations and AFTER the controller is completely separated from the mains. Replace fuse only with same type and rating.

TEDP - Transformer Single Phase
 Demand Proportional Drive

Features

- Proportional 5 step control of fan speed via 0-10VDC control signal
- Supply: 230 VAC, $50 / 60 \mathrm{~Hz}, 1$ Phase
- IP54 ingress protection
- In built motor overheat protection via motor thermostats (Tk)
- Control signal input: 0-10 VDC Supply: 12 VDC e.g. CO_{2}, pressure and temperature sensor
- BMS enable/disable
- Indicator lights: run/fault
- Enclosure: plastic (R-ABS, UL94-V0, RAL 7035) or sheet steel (RAL 7035)
- Maximum ambient temperature: $50^{\circ} \mathrm{C}$

Description

The TEDP transformer speed controllers are based on the principle of voltage control with auto-transformers. They are applicable to single phase voltage-controllable motors $(230 \mathrm{~V}, 50 / 60 \mathrm{~Hz})$ to control the rotational speed of fans.

Each of the 5 transformer steps is selected with a 0-10 VDC signal, for example: combine with SDPV10, SDPV230 or other external signal.

TEDP drives are fitted connections for motors with thermostat (Tk) overheat protection.

A safety isolator/switch disconnector should be installed on the mains side of all motor drives; refer to SISO.

Range

For selection of the correctly current rated drive select the first model with a current rating above the fan full load current (FLC) to be controlled.

Model	TEDP1.5A	TEDP2.5A	TEDP3.5A	TEDP5A	TEDP7.5A	TEDP13A
Part	EA900019	EA900020	EA900021	EA900022	EA900023	EA900024
Lmax (A)	$1.5 A$	$2.5 A$	$3.5 A$	$5.0 A$	$7.5 A$	$13 A$
Fuse (A)	$2.0 A$	$3.15 A$	$5 A$	$8 A$	$12.5 A$	20A
IP Rate	IP54	IP54	IP54	IP54	IP54	IP54

Wiring Diagram

Speed increases at: $2,4,6,8,9.5$ VDC. Speed reduces at: $1.8,3.8,5.8,7.8$, 9.3 VDC

VOLTAGE TAP	0	80	110	140	170	190	230
SWITCH POSITION		1	2	3	4	5	

L N - Power supply $230 \mathrm{VAC}-50 / 60 \mathrm{~Hz}$
L1 N - Unregulated output 230 VAC (max. 2 A)
U N1 - Motor connection
TK - Input thermostat (Tk) from motor
0V - GND
+12 V - Output $12 \mathrm{VDC} / \operatorname{Imax}=50 \mathrm{~mA}$ (*Sum of the current for both outputs (+12 V and +V) may not be greater than 100 mA))
+V - Digital output $12 \mathrm{VDC} / \operatorname{Imax}=50 \mathrm{~mA}^{*} 0 \mathrm{~V}-\mathrm{TK}$ fault 12 V - normal operation
V/C Input 0-10 VDC
Pe Earth connections

Dimensions \& Weights

Model	A	B	C	D	E	Net kg	Gross kg	Enclosure
TEDP1.5A	200	305	140	183	236	4.4	5.7	Plastic
TEDP2.5A	200	305	140	183	236	4.5	4.8	Plastic
TEDP3.5A	200	305	140	183	236	5.7	6	Plastic
TEDP5A	200	305	140	183	236	6.4	6.7	Plastic
TEDP7.5A	200	305	140	183	236	8.6	8.9	Plastic
TEDP13A	300	325	170	255	255	15.9	16.2	Steel

Mounting Instructions

Speed controller for single phase voltage controllable motors.

Mounting

Break (Isolate) mains voltage. The controllers are to be mounted vertically on a smooth surface. Connect voltage supply, motor(s) and earth as shown in the scheme with cables of the proper diameter and in accordance with local regulations.

Wiring (see above diagram)
Connecting the input signal: a separate $0-10 \mathrm{~V}$ signal is provided. In this case only 0 V and V / C will be needed, connect negative line to the " 0 V " TB and the + or $0-10 \mathrm{~V}$ to the " V / C " TB . The
" +V " TB provides status feedback: Normal operation:12V (max 70 mA); Over temp fault: 0 V .

If TK is not used: Link TK-TK
A safety isolator/switch disconnector should be installed on the mains side of all motor drives; refer to SISO.

Transport and stock keeping
Avoid shocks and extreme conditions, stock in original packing.
Warranty
Two years from delivery date against defects in manufacturing. Any modifications or alterations to the product relieve the manufacturer of all responsibility. The manufacturer bears no responsibility for any misprints or mistakes in this data, and modifications or improvements to the product can be made at any time after date of publication.

Maintenance

In normal conditions the controllers are maintenance-free. If soiled clean with dry or damp cloth. In case of heavy pollution clean with a non-aggressive product. In these circumstances the controller should be disconnected from the mains. Pay attention that no fluids enter the
controller. Only reconnect the controller to the mains when it is completely dry.

Motor protection
The controller has connections for motors fitted with thermostat (Tk) overheat protection (NC contacts). Reset: disconnect and reconnect power.

All works may only be carried out by skilled personnel following the local regulations and AFTER the controller is completely separated from the mains. Replace fuse only with same type and rating

Transformer Speed Controllers \& Drives - Three Phase TDID - Transformer Three Phase

Independent Drive

Features

- Independent 5 step transformer drive with motor overheat protection via thermostats
- Supply: 400 VAC, $50 / 60 \mathrm{~Hz}, 3$ Phase
- IP54 ingress protection
- In built motor overheat protection via motor thermostats (Tk)
- Switch: 5 positions with offposition
- Indicator light
- 230 VAC unregulated output
- Enclosure: plastic (R-ABS, UL94-V0, RAL 7035) / sheet steel (RAL 7035)
- Maximum ambient temperature: $50{ }^{\circ} \mathrm{C}$

Description

The TDID transformer speed controllers are based on the principle of voltage control with auto-transformers. They are applicable to three phase voltage-controllable motors ($400 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$), to control the rotational speed of fans in five steps.

They are fitted out with contacts for motors equipped with thermostat (Tk) overheat protection.

A safety isolator/switch disconnector should be installed on the mains side of all motor drives; refer to SISO.

Wiring Diagram

R S T - power supply 400 VAC $-50 / 60 \mathrm{~Hz} \mathrm{~N}$ - Neutral L1 - unregulated output 230 VAC (2 A)
U V W - motor connection
TK - input thermal contacts of the motor Pe - earth connections

Range

For selection of the correctly current rated drive select the first model with a current rating above the fan full load current (FLC) to be controlled.

Model	TDID2.5A	TDID4A	TDID8A	TDID11A
Part	EA900025	EA900026	EA900027	EA900028
Lmax (A)	2.5	4	8	11
IP Rate	IP54	IP54	IP54	IP54

Dimensions \& Weights

Model	A	B	C	D	E	Net kg	Gross kg	Enclosure
TDID2.5A	300	325	175	255	255	13.2	13.5	Steel
TDID4A	300	425	175	255	355	18.2	18.7	Steel
TDID8A	300	425	235	255	355	36.4	37	Steel
TDID11A	400	430	235	355	355	38.4	39	Steel

Mounting Instructions

Speed controller for three phase voltage controllable motors.

Mounting

Break (Isolate) mains voltage. The controllers are to be mounted on a smooth surface. Connect voltage supply, motor(s) and earth as shown in the scheme with cables of the proper diameter.

Wiring (see diagram on previous page)
A safety isolator/switch disconnector should be installed on the mains side of all motor drives; refer to SISO.

Transport and stock keeping
Avoid shocks. Stock in original packing. Avoid extreme conditions.

Warranty

Two years from delivery date against defects in manufacturing. Any modifications or alterations to the product relieve the manufacturer of all responsibility. The manufacturer bears no responsibility for any misprints or mistakes in this data, and modifications or improvements to the product can be made at any time after date of publication.

Maintenance
In normal conditions the controllers are maintenance-free. If soiled clean with dry or damp cloth. In case of heavy pollution clean with a non-aggressive product. In these circumstances
the controller should be disconnected from the mains. Pay attention that no fluids enter the controller. Only reconnect the controller to the mains when it is completely dry.

Motor protection
The controller has contacts for motors with thermostat (Tk) overheat protection (NC-contact). When motor overheating (or a power failure) is detected the controller stops power to the motor. The red indicator light and alarm output will signal this error condition. (Reset: main switch to off position and back).

All works may only be carried out by skilled personnel following the local regulations and AFTER the controller is completely separated from the mains.

TDDS - Transformer Three Phase

 Demand Switched Drive

Features

- Switched 5 step transformer controller with motor thermostat (Tk) overheat protection
- Supply: 400 VAC, $50 / 60 \mathrm{~Hz}, 3$ Phase
- IP54 ingress protection
- In built motor overheat protection via motor thermostats (Tk)
- Switch: 5 positions with offposition
- BMS enable/disable and fault
- Run/Stop contacts (CC - normally closed, OC - normally open) for remote control
- Enclosure: sheet steel (RAL 7035, polyester powder coating)
- Maximum ambient temperature: $50^{\circ} \mathrm{C}$

Description

The TDDS transformer speed controllers are based on the principle of voltage control with autotransformers. They are applicable to three phase voltage-controllable motors ($400 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$), to control the rotational speed of fans in five steps.

They are fitted with contacts for motors with thermostat (Tk) overheat protection and run/stop contacts (CC-closed/OC-open) for external or remote starting and stopping via PIR, thermostats, BMS enable/disable etc.

A safety isolator/switch disconnector should be installed on the mains side of the drive; refer to SISO.

Wiring Diagrams

R S T - power supply 400 VAC $-50 / 60 \mathrm{~Hz}$
N - Neutral
L1 - unregulated output 230 VAC (2 A)
U V W - motor connection
TK - input thermal contacts of the motor
CC - contact normally closed
OC - contact normally open
$\mathrm{N}-\mathrm{AL}$ - alarm output (230 VAC/1 A
$\begin{array}{llllllll}R & S & T & N & L 1 & U & V & W\end{array}$

Range

For selection of the correctly current rated drive select the first model with a current rating above the fan full load current (FLC) to be controlled.

Model	TDDS2.5A	TDDS4A	TDDS8A	TDDS11A
Part	EA900029	EA900030	EA900031	EA900032
Lmax (A)	2.5	4	8	11
IP Rate	IP54	IP54	IP54	IP54

Dimensions \& Weights

All works may only be carried out by skilled personnel following the local regulations and AFTER the controller is completely separated from the mains.

Mounting Instructions

Speed controller for three phase voltage controllable motors.

Mounting

Break (Isolate) mains voltage. The controllers are to be mounted on a smooth surface. Connect voltage supply, motor(s) and earth as shown in the scheme with cables of the proper diameter.

Wiring (see diagram on previous page)
A safety isolator/switch disconnector should be installed on the mains side of all motor drives; refer to SISO.

Transport and stock keeping
Avoid shocks. Stock in original packing. Avoid extreme conditions.

[^0]
TDDSD - Transformer Three Phase
 Demand Switched Dual Speed Drive

Features

- Dual switched 5 step transformer control with motor thermostat (Tk) protection
- Supply: $400 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}, 3$ Phase
- IP 54 ingress protection
- In built motor overheat protection via motor thermostats. Can be used for BMS fault.
- BMS enable/disable (BMS fault via Tk) Run/Stop contacts (CC, OC)
- Enclosure: sheet steel (RAL 7035, polyester powder coating)
- Maximum ambient temperature: $50^{\circ} \mathrm{C}$

Description

The TDDSD transformer speed controllers are based on the principle of voltage control with auto-transformers. They are applicable to three phase voltage-controllable motors ($400 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$) to control the rotational speed of fans.

This controller makes it possible to select two optimal motor speeds and to switch these by a contact. Important energy savings and an increase of comfort can be realised. e.g. thermostat, PIR control.

They are fitted with connections for motor thermostat (Tk) overheat protection and run/stop contacts (CC-closed/OC-open) for external or remote starting e.g. PIR, thermostat, BMS enable/disable.

Wiring Diagrams

TDDSD2.5A

R S T - power supply $400 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$
N - Neutral
L1 - unregulated output 230 VAC (max 2 A)
U V W - motor connection
CL - contact normally closed (external clock - high/low switching)
TK - input thermal contacts of the motor
CC - contact normally closed
OC - contact normally open
$\mathrm{N}-\mathrm{AL}$ - alarm output ($230 \mathrm{VAC} / 1 \mathrm{~A}$)
Pe - earth connections

Range

For selection of the correctly current rated drive select the first model with a current rating above the fan full load current (FLC) to be controlled.

Model	TDDSD2.5A	TDDSD4A	TDDSD8A	TDDSD11A
Part	EA900033	EA900034	EA900035	EA900036
Lmax (A)	2.5	4	8	11
IP Rate	IP54	IP54	IP54	IP54

Dimensions \& Weights

All works may only be carried out by skilled personnel following the local regulations and AFTER the controller is completely separated from the mains.

Mounting Instructions

Speed controller for three phase voltage controllable motors.

Mounting

Break (Isolate) mains voltage. The controllers are to be mounted on a smooth surface. Connect voltage supply, motor(s) and earth as shown in the scheme with cables of the proper diameter.

Wiring (see diagram on previous page)
A safety isolator/switch disconnector should be installed on the mains side of all motor drives; refer to SISO.

Transport and stock keeping
Avoid shocks. Stock in original packing. Avoid extreme conditions.

[^1]
TDDP - Transformer Three Phase Demand Proportional Drive

Features

- Proportional 5 step transformer control with motor thermostat (Tk) overheat protection
- Supply: $400 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}, 3$ Phase
- IP54 ingress protection
- In built motor overheat protection via motor thermostats (Tk)
- Control signal input: 0-10 VDC Supply: 12 VDC e.g. CO_{2}, pressure and temperature sensor
- Supply: 12 VDC output
- BMS enable/disable
- Indicator lights: run/fault
- Enclosure: sheet steel (RAL 7035, polyester powder coating)
- Maximum ambient temperature: $50^{\circ} \mathrm{C}$

Description

The TDDP transformer speed controllers are based on the principle of voltage control with auto-transformers. They are applicable to three phase voltage-controllable motors ($400 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$) to control the rotational speed of fans.

By combining the transformer outputs, contactors and a relay board, it is possible to select these predetermined speeds with a $0-10$ VDC signal, for example: combine with SDPV10, SDPV230 or other external signal.

They are fitted with thermostat (Tk) contacts for motor protection and BMS enable/disable facilities.

A safety isolator/switch disconnector should be installed on the mains side of all motor drives; refer to SISO.

Wiring Diagram

Speed goes up at: $2,4,6,8,9.5$ VDC
Speed goes down at: 1.8, 3.8, 5.8, 7.8, 9.3 VDC
R S T - power supply 400 VAC- $50 / 60 \mathrm{~Hz}$
L1 N - unregulated output 230 VAC (max 2 A)
U V W - motor connection
TK - input thermal contacts of the motor
0V - GND
+12 V - output $12 \mathrm{VDC} / \operatorname{Imax}=50 \mathrm{~mA}^{*}$ * The sum of the current for both outputs $(+12 \mathrm{~V}$ and +V$)$
may not be greater than 100 mA
$+\mathrm{V}-$ digital output $12 \mathrm{VDC} / \operatorname{Imax}=50 \mathrm{~mA}^{*}$
$0 \mathrm{~V}=\mathrm{TK}$ fault
$12 \mathrm{~V}=$ normal operation
V/C input U: 0-10 VDC
Pe earth connections x3

Range

For selection of the correctly current rated drive select the first model with a current rating above the fan full load current (FLC) to be controlled.

Model	TDDP2.5A	TDDP4A	TDDP8A	TDDP11A
Part	EA900037	EA900038	EA900039	EA900040
Lmax (A)	2.5	4	8	11
IP Rate	IP54	IP54	IP54	IP54

路呙

Dimensions \& Weights

Model	A	B	C	D	E	Net kg	Gross kg	Enclosure
TDDP2.5A	300	425	170	255	355	17	17.5	Steel
TDDP4A	400	425	200	355	355	20	20.5	Steel
TDDP8A	400	425	200	355	355	27	27.5	Steel
TDDP11A	400	425	200	355	355	30	30.5	Steel

Mounting Instructions

Speed controller for three phase voltage controllable motors.
Wiring (Refer to diagram above)
When TK-TK not used: Connect TK-TK
A safety isolator/switch disconnector should be installed on the mains side of all motor drives; refer to SISO.

Mounting

Break (Isolate) mains voltage. The controllers are to be mounted vertically on a smooth surface. Connect voltage supply, motor(s) and earth as shown in the scheme with cables of the proper diameter and in accordance with local regulations.

Transport and stock keeping
Avoid shocks and extreme conditions, stock in original packing.
Warranty
Two years from delivery date against defects in manufacturing. Any modifications or alterations to the product relieve the manufacturer of all responsibility. The manufacturer bears no responsibility for any misprints or mistakes in this data, and modifications or improvements to the product can be made at any time after date of publication.

Maintenance

In normal conditions the controllers are maintenance-free. If soiled clean with dry or damp cloth. In case of heavy pollution clean with a non-aggressive product. In these circumstances
the controller should be disconnected from the mains. Pay attention that no fluids enter the controller. Only reconnect the controller to the mains when it is completely dry.

Motor protection
In built motor overheat protection via motor thermostats (Tk). When these contacts open because of motor overheating, this circuit is broken and the controller stops power to the motor. There is NO
automatic restart for safety reasons. After elimination of the cause of the overheating, restart by putting the switch in Off-position for a few moments.

All works may only be carried out by skilled personnel following the local regulations and AFTER the controller is completely separated from the mains.

Features

- $400 \mathrm{~V}, 1.2-15.5 \mathrm{~A}, 0.37-7.5 \mathrm{~kW} 3 \mathrm{Ph}$
- Enclosure IP20
- Max shielded cable length 25 m
- Asynch motor control
- Simple installation wizard
- Ultra compact
- Alpha-numeric display
- Included potentiometer for manual speed adjustment \& thermistor overheat protection
- Built in RFI allowing for 15 m of screen cable
- Built-in brake functions with built in DC and AC brake functions
- $\quad 2 x A I, 1 x A O \& 1 x R O / R S 485$. Connectable as Modbus RTU
- BMS enable/disable
- Maximum ambient $50^{\circ} \mathrm{C}$

Description
IDDXB20 is a three phase frequency converter with unsurpassed reliability, user-friendliness, condensed functionality, and extremely easy to commission. Terminal numbers are named in the same manner as in the rest of the family.

IDDXB20 can be set up to perform perfectly even in complex application set-ups. It is specifically configured for installation close to tube and box fans.

Independent drive, from the front potentiometer, switched and proportional demand control are included as standard.

A safety isolator/switch disconnector should be installed on the mains side of all motor drives; refer to SISO.

Description	Part
Local Control Panel(LCP11) Digital Keypad w/out Pot.	EA901057
Local Control Panel(LCP12) Digital Keypad with Pot.	EA901058
Local Control Panel mtg kit (inc. 3m cable)	EA901059
NEMA Type 1 kit M1	EA901060
NEMA Type 1 kit M1	EA901061
NEMA Type 1 kit M1	EA901062
Decoupling plate for M1 \& M2	EA901063
Decoupling plate for M3	EA901064
IP21 for M1 frame	EA901065
IP21 for M2 frame	EA901066
IP21 for M3 frame	EA901067
DIN rail kit for M1 frame	EA901068

Wiring Diagram

For detail please refer to the specific diagrams supplied with each drive.

Dimensions \& Weights

Frame	M1	M2	M3	Unit
w	70	75	90	mm
d	55	65	69	mm
h	190	210	300	mm
h3	230	250	340	mm
w1	40	40	55.6	mm
h1	213	233	323	mm
w2	55	59	69	mm
h2	140	166.5	226	mm
I1	45	38.5	68	mm
I2	7.6	8	9.3	mm
PE	M6	M6	M6	metric
Weight	2	3	5	kg

Mounting Instructions
Please refer to the specific instructions \& software supplied with each drive.

All works may only be carried out by skilled personnel following the local regulations, reference to the installation guide and AFTER the controller is completely separated from the mains.

Features

- $400 \mathrm{~V}, 1.2-90 \mathrm{~A}, 0.37-90 \mathrm{~W} 3 \mathrm{Ph}$
- Designed for HVAC applications i.e. Fire mode, Flying Start..
- Enclosures IP20 (see IDDXF54 for IP54 and IDDXF66 for IP66)
- Asynch \& PM motor control. Max shielded cable length 25 m
- Simple installation wizard, Alphanumeric display
- Alpha-numeric display
- In built motor overheat protection via motor thermistors
- EMC A1/C2 integrated filters \& DC choke for harmonic mitigation
- $4 x D I, 2 x A I, 1 x A O / D O \& 2 x R O /$ RS485 BMS enable/disable Modbus RTU, N2, FLN \& BACnet
- Maximum ambient $50^{\circ} \mathrm{C}$

Description
Designed specifically for fan applications the three phase IDDXF Frequency converters control speed, torque, and the overall performance of AC \& PM motors by controlling the power input

Independent, Switched and Proportional demand control from the included digital, and HVAC protocols ensures maximum efficiency and comfort to the level required.

A safety isolator/switch disconnector should be installed on the mains side of all motor drives; refer to SISO.

Range

For selection of the correctly current rated drive select the first model with a current rating above the fan full load current (FLC) to be controlled.

Model	Ph.	V	IP	Amps	kW	FWG Part	Enc.
IDDXF-20-1.2	$3-3$	400 V	20	1.2	0.37	EA901000	H1
IDDXF-20-2.2	$3-3$	400 V	20	2.2	0.75	EA901001	H1
IDDXF-20-3.7	$3-3$	400 V	20	3.7	1.5	EA901002	H1
IDDXF-20-5.3	$3-3$	400 V	20	5.3	2.2	EA901003	H2
IDDXF-20-7.2	$3-3$	400 V	20	7.2	3.0	EA901004	H2
IDDXF-20-9	$3-3$	400 V	20	9	4.0	EA901005	H2
IDDXF-20-12	$3-3$	400 V	20	12	5.5	EA901006	H3
IDDXF-20-15.5	$3-3$	400 V	20	15.5	7.5	EA901007	H3
IDDXF-20-23	$3-3$	400 V	20	23	11.0	EA901008	H4
IDDXF-20-31	$3-3$	400 V	20	31	15.0	EA901009	H4
IDDXF-20-37	$3-3$	400 V	20	37	18.5	EA901010	H5
IDDXF-20-42.5	$3-3$	400 V	20	42.5	22.0	EA901011	H5
IDDXF-20-61	$3-3$	400 V	20	61	30.0	EA901012	H6
IDDXF-20-73	$3-3$	400 V	20	73	37.0	EA901013	H6
IDDXF-20-90	$3-3$	400 V	20	90	45.0	EA901014	H6

Description	FWG Part
Local Control Panel	EA901O31
Local Control Panel mounting kit inc. 3m cable	EA901032
Decoupling plate H1 \& H2	EA901033
Decoupling plate H3	EA901034
Decoupling plate H4 \& H5	EA901035
IP21 option H1	EA901036
IP21 option H2	EA901037
IP21 option H3	EA901038
IP21 option H4	EA901039
IP21 option H5	EA901040

Wiring Diagram

For detail please refer to the specific diagrams supplied with each drive.

Dimensions \& Weights

Mounting Instructions
Please refer to the specific instructions \& software supplied with each drive.

All works may only be carried out by skilled personnel following the local regulations, reference to the installation guide and AFTER the controller is completely separated from the mains.

Enclosure		Power [kW]		Height [mm]			Width [mm]		$\left\|\begin{array}{c} \text { Depth } \\ {[\mathrm{mm}]} \end{array}\right\|$	Mounting hole [mm]			Max Weight
Frame	$\stackrel{\mathbb{P}}{\text { Class }}$	$\begin{gathered} 3 \mathrm{x} \\ 380-480 \mathrm{~V} \end{gathered}$	$\begin{gathered} 3 \mathrm{x} \\ 525-600 \mathrm{v} \end{gathered}$	A	"A incl Decoupling Plate"	a	B	b	C	d	e	f	kg
H1	IP20	0.37-1.5		195	273	183	75	56	168	9	4.5	5.3	2.1
	IP20	2.2-4.0		227	303	212	90	65	190	11	5.5	7.4	3.4
	IP20	5.5-7.5		255	329	240	100	74	206	11	5.5	8.1	4.5
H4	IP20	11-15		296	359	275	135	105	241	12.6	7	8.4	7.9
H5	IP20	18.5-22		334	402	314	150	120	255	12.6	7	8.5	9.5
H6	IP20	30-45	18.5-30	518	$\begin{gathered} 595 / 635 \\ (45 \mathrm{~kW}) \end{gathered}$	495	239	200	242	-	8.5	15	24.5
H7	IP20	55-75	37-55	550	$\begin{gathered} 630 / 690 \\ (75 \mathrm{~kW}) \end{gathered}$	521	313	270	335	-	8.5	17	36
H8	IP20	90	75-90	660	800	631	375	330	335	-	8.5	17	51
	IP20		2.2-7.5	269	374	257	130	110	205	11	5.5	9	6.6
H10	IP20		11-15	399	419	380	165	140	248	12	6.8	7.5	12

Features

- $400 \mathrm{~V}, 2.2-177 \mathrm{~A}, 0.75-90 \mathrm{~kW} 3 \mathrm{Ph}$
- Designed for HVAC applications i.e. Fire mode, Flying Start..
- Enclosures IP54 (see IDDXF20 for IP20 and IDDXF66 for IP66)
- Asynch \& PM motor control. Max shielded cable length 25 m
- Simple installation wizard. Alphanumeric display
- In built motor overheat protection via motor thermistors
- EMC A1/C2 integrated filters \& DC choke for harmonic mitigation
- $4 x D I, 2 x A I, 1 x A O / D O \& 2 x R O /$ RS485. Modbus RTU, N2, FLN \& BACnet
- Maximum ambient $50^{\circ} \mathrm{C}$

Description
Designed specifically for three phase fan applications the IDDXF Frequency converters control speed, torque, and the overall performance of AC \& PM motors by controlling the power input. Independent, Switched and Proportional demand control from the included digital, and HVAC protocols ensures maximum efficiency and comfort to the level required.

A safety isolator/switch disconnector should be installed on the mains side of all motor drives; refer to SISO.

Description	FWG Part
Local Control Panel	EA9O1O31
Local Control Panel mounting kit inc. 3m cable	EA901032
Decoupling plate H1 \& H2	EA901033
Decoupling plate H3	EA901034
Decoupling plate H4 \& H5	EA901035
IP21 option H1	EA901036
IP21 option H2	EA901037
IP21 option H3	EA901O38
IP21 option H4	EA901039
IP21 option H5	EA901040

Wiring Diagram
For detail please refer to the specific diagrams supplied with each drive.

Dimensions \& Weights

Mounting Instructions

Please refer to the specific instructions \& software supplied with each drive.

All works may only be carried out by skilled personnel following the local regulations, reference to the installation guide and AFTER the controller is completely separated from the mains.

Enclosure	Power [kW]			Height [mm]			Depth [mm]		Mountin [m		Max Weight
$\begin{array}{\|cc\|} \hline \text { Frame } & \text { Class } \\ \hline \end{array}$	$\begin{gathered} 3 x \\ 380-480 \mathrm{~V} \end{gathered}$	A	"A incl Decoupling Plate" Plate"	a	B	b	C	d	e	f	kg
$12 \quad$ PP54	0.75-4.0	332	-	318.5	115	74	225	11	5.5	9	5.3
$13 \quad 1 P 54$	5.5-7.5	368	-	354	135		237	12	6.5	9.5	7.2
$14 \quad$ P55	11-18.5	476	-	460	180	133	290	12	6.5	9.5	13.8
$15 \quad$ P55	11-18.5	480	-	454	242		260	19	9	9	23
$16 \quad$ IP54	22-37	650	-	624	242	210	260	19	9	9	27
$17 \quad$ P55	45-55	680	-	648	308		310	19	9	9.8	45
$18 \quad$ P54	75-90	770	-	739	370	334	335	19	9	9.8	65

Features

- $400 \mathrm{~V}, 3.0-106 \mathrm{~A}, 1.1-55 \mathrm{~kW} 3 \mathrm{Ph}$
- Designed for HVAC applications i.e. Fire mode, Flying Start..
- Enclosures IP66 ingress protection
- Max shielded cable length 25 m
- Asynch \& PM motor control
- Simple installation wizard
- Ultra compact
- Alpha-numeric display
- In built motor overheat protection via motor thermistors
- LCP Remote mounting kit with 3m cable available
- Connectable to all major HVAC protocols Modbus RTU, N2, FLN \& BACnet
- EMC A1/C2 integrated filters \& DC choke for harmonic mitigation
- $4 x D I, 2 x A I, 1 x A O / D O \& 2 x R O /$ RS485
- BMS enable/disable
- Fully programmable set points via display \& included software
- Maximum ambient $50^{\circ} \mathrm{C}$
- High energy efficiency

Description
Designed specifically for three phase fan applications the IDDXF Frequency converters control speed, torque, and the overall performance of AC \& PM motors by controlling the power input.

Independent, Switched and Proportional demand control from the included digital, and HVAC protocols ensures maximum efficiency and comfort to the level required.

A safety isolator/switch disconnector should be installed on the mains side of all motor drives; refer to SISO.

Range

Model	Ph.	V	IP	Amps	kW	FWG Part	Enc.
IDDXF-66-3	$3-3$	400 V	66	3	1.1	EA901072	A4
IDDXF-66-4.1	$3-3$	400 V	66	4.1	1.5	EA901073	A4
IDDXF-66-5.6	$3-3$	400 V	66	5.6	2.2	EA901074	A4
IDDXF-66-7.2	$3-3$	400 V	66	7.2	3	EA901075	A4
IDDXF-66-9	$3-3$	400 V	66	9	4	EA901076	A4
IDDXF-66-12	$3-3$	400 V	66	12	5.5	EA901077	A5
IDDXF-66-15.5	$3-3$	400 V	66	15.5	7.5	EA901078	A5
IDDXF-66-23	$3-3$	400 V	66	23	11	EA901079	B1
IDDXF-66-31	$3-3$	400 V	66	31	15	EA901080	B1
IDDXF-66-37	$3-3$	400 V	66	37	18.5	EA901081	B1
IDDXF-66-42.5	$3-3$	400 V	66	42.5	22	EA901082	B2
IDDXF-66-61	$3-3$	400 V	66	61	30	EA901083	B2
IDDXF-66-73	$3-3$	400 V	66	73	37	EA901084	C1
IDDXF-66-90	$3-3$	400 V	66	90	45	EA901085	C1
IDDXF-66-106	$3-3$	$400 V$	66	106	55	EA901086	C1

Wiring Diagram
For detail please refer to the specific diagrams supplied with each drive.

Dimensions \& Weights

Frame size (kW):	A4	A5	B1	B2	C1
380-480V	1.1-40	1.1-7.5	11-18.5	22-30	37-55
IP	/66	/66	/66	/66	/66
Height (mm)					
Enclosure	390	420	480	650	680
...with de-coupling plate	-	-	-	-	-
Back plate	390	420	480	650	680
Distance between mount. Holes	401	402	454	624	648
Width (mm)					
Enclosure	200	242	242	242	308
With one C option		242	242	242	308
Back plate	200	242	242	242	308
Distance between mount. Holes	171	215	210	210	272
Depth (mm)					
Without option A/B	175	200	260	260	310
With option A/B	175	200	260	260	310
Screw holes (mm)					
	8.2	8.2	12	12	12
Diameter ©	12	12	19	19	19
Diameter ©	6.5	6.5	9	9	9
	6	9	9	9	9.8
Max Weight (kg)	9.7	14	23	27	45

Mounting Instructions

Please refer to the specific instructions \& software supplied with each drive.

All works may only be carried out by skilled personnel following the local regulations, reference to the installation guide and AFTER the controller is completely separated from the mains.

Inverter Speed Control \& Drives IEDXB2O - Inverter Single to Three Phase IP20

Demand Independent, Switched and Proportional Drive - For Tube/Box Fans

Features

- $1 \times 200-240 \mathrm{VAC}$ to $3 \times 200-240 \mathrm{VAC}$, 1.2-9.6A, $0.18-2.2 \mathrm{~kW}$
- Enclosure IP20
- Max shielded cable length 25 m
- Asynch motor control
- Simple installation wizard
- Ultra compact
- Alpha-numeric display
- Included fitted potentiometer for manual speed adjustment
- Connectable as Modbus RTU
- Built in RFI
- Built-in brake functions with built in DC and AC brake functions
- $2 x A I, 1 x A O \& 1 x R O / R S 485$
- BMS enable/disable
- Maximum ambient $50^{\circ} \mathrm{C}$
- Coated PCB standard for harsh environments
- High energy efficiency

Description
IEDXB20 is a frequency converter with unsurpassed reliability, user-friendliness, condensed functionality, and extremely easy to commission. Terminal numbers are named in the same manner as in the rest of the family.

It converts single phase 200-240VAC input to three phase output for areas limited by power supply availability and efficiency requirements.

Independent drive, from the front potentiometer, switched and proportional demand control are included as standard.

A safety isolator/switch disconnector should be installed on the mains side of the drive; refer to SISO.

Ensure motor is suitable for 200-240VAC 3 phase operation.

Range

Model	Ph.	V	\mathbb{P}	Amps	kW	FWG Part	Enc.
IEDXB-20-1.2	$1-3$	$200-240 \mathrm{~V}$	20	1.2	0.18	EA901050	M 1
IEDXB-20-2.2	$1-3$	$200-240 \mathrm{~V}$	20	2.2	0.37	EA901051	M1
IEDXB-20-4.2	$1-3$	$200-240 \mathrm{~V}$	20	4.2	0.75	EA901052	M2
IEDXB-20-6.8	$1-3$	$200-240 \mathrm{~V}$	20	6.8	1.5	EA901053	M2
IEDXB-20-9.6	$1-3$	$200-240 \mathrm{~V}$	20	9.6	2.2	EA901054	M3

Accessories

Description	Part
Local Control Panel(LCP11) Digital Keypad w/out Pot.	EA901057
Local Control Panel(LCP12) Digital Keypad with Pot.	EA901058
Local Control Panel mtg kit (inc. 3m cable)	EA901059
Decoupling plate for M1 \& M2	EA901063
Decoupling plate for M3	EA901064
IP21 for M1 frame	EA901065
IP21 for M2 frame	EA901066
IP21 for M3 frame	EA901067
DIN rail kit for M1 frame	EA901068

Wiring Diagram
For detail please refer to the specific diagrams supplied with each drive.

Dimensions \& Weights

Frame	M1	M2	M3	Unit
w	70	75	90	mm
d	55	65	69	mm
h	190	210	300	mm
h3	230	250	340	mm
w1	40	40	55.6	mm
h1	213	233	323	mm
w2	55	59	69	mm
h2	140	166.5	226	mm
I1	45	38.5	68	mm
I2	7.6	8	9.3	mm
PE	M6	M6	M6	metric
Weight	2	3	5	kg

Mounting Instructions
Please refer to the specific instructions \& software supplied with each drive.

All works may only be carried out by skilled personnel following the local regulations, reference to the installation guide and AFTER the controller is completely separated from the mains.

SISO－Safety Isolators／Switch－Disconnectors

Features

－Electrical range $230 \mathrm{~V}-690 \mathrm{~V}$ $1-3$ phase， $50-60 \mathrm{~Hz}, 0-63 \mathrm{~A}$
－Enclosure IP66 Grey RAL 7035
－Mechanically interlocked with 3xPadlock to＇Off＇apertures
－Early breaker fitted to all units as standard．Three and Six pole／wire versions available
－Three and Six pole／wire versions available
－Two entries top and bottom 20／25A M20 40／63A M20／25
－Stainless steel facia screws
－Two earth continuity screws in each enclosure

Description

All fans and drives should have a correctly rated lockable isolation switch installed in the power input circuit to provide full electrical isolation．This is vital for safe installation，operation and maintenance．

Many modern drives also require an early break signal so that a graceful full power off can be achieved without damage to sensitive electronics．Early break is included in all SISO Isolators．Isolators are provided with mechanically interlocked IP66 as standard．

Range

Model	Description	Part
SISO25－3	Isolator 3P 25A＋2EB	EAOO2000
SISO4O－3	Isolator 3P 4OA＋2EB	EA002001
SISO63－3	Isolator 3P 63A＋2EB	EAOO2002
SISO25－6	Isolator 6P＋2EB 25A	EAOO2003
SISO4O－6	Isolator 6P＋2EB 4OA	EAOO2004

	Auxiliary Contacts		
Rated insulation		V	690
Rated thermal current		A	10
	100 V	A	8
Operational current	$220-240 \mathrm{~V}$	A	8
	$380-400 \mathrm{~V}$	A	3
Max．conductor size	$660-690 \mathrm{~V}$	A	1
Tightening torque		mm^{2}	1.5
		Nm^{2}	0.6

Wiring Diagram

$$
0 \text { - I (90indexing) }
$$

0－1（90indexing）

2 \＆3 Pole

6 Pole

Attribute	Unit	SISO25－3	SISO4O－3	SISO63－3	SISO2O－6	SISO4O－6
Rated thermal current	A	25	40	63	20	40
Rated insulation voltage	V	690	690	690	690	690
Rated impulse voltage	kV	6.0	6.0	6.0	6.0	6.0
Rated operational power（3 phase AC）	kW	11.0	15.0	25.0	7.5	15.0
Rated short withstand current（1 sec）	A	500	600	1300	250	800
Terminal type		高	啚	啚	$\stackrel{3}{3}$	$\stackrel{3}{3}$
Flexible cable	mm^{2}	6.0	6.0	16.0	2.5×2	6.0×2
Rigid cable	mm^{2}	10.0	10.0	25.0	2.5×2	10．0x2
Tightening torque	Nm	1.2	1.2	1.2	1.0	1.0

Dimensions \& Weights

Amps	$\mathrm{H}(\mathrm{mm})$	$\mathrm{W}(\mathrm{mm})$	$\mathrm{D}(\mathrm{mm})$	$\mathrm{F} 1(\mathrm{~mm})$	$\mathrm{F} 2(\mathrm{~mm})$	$\varnothing(\mathrm{mm})$
$20 / 25 \mathrm{~A}$	135	100	95	85	98.5	5.5
$40 / 63 \mathrm{~A}$	175	130	115	115	135	5.5

Mounting Instructions

This product shall be installed, commissioned and maintained by or under the supervision of a competent electrician in accordance with current electrical engineering Codes of practice and regional laws.

It is essential that the power supply is disconnected prior to installation.
To maintain the IP rating to the product it is important to adhere to the following,

- Use only the existing mounting holes
- Use cable glands and sealing washers designed to maintain the rating
- Tighten lid screws to 1.2 Nm

The unit designed to be mounted vertically.
Ensure that the correct cross section of cable and terminators are used as the table above.

All works may only be carried out by skilled personnel following the local regulations, reference to the installation guide and AFTER the controller is completely separated from the mains.

SDXT - Room Temperature Sensor/Switch Controller
 for Demand Proportional \& Switched Drives

Features

- Supply voltage: 18 - 32 VDC ± 10 $\% / 15-24 \mathrm{Vac} \pm 10 \%$
- Low profile housing with covered screws
- Terminal blocks with 0.75 mm 2 connectors
- Measurement range $-0+40^{\circ} \mathrm{C}$
- Accuracy: $\pm 0,5^{\circ} \mathrm{C}$
- Short reaction times: less than 2 sec. in air
- LED operating indication
- Enclosure: plastic ABS, V0, RAL9010 ivory
- Protection class: IP30
- Power consumption: up to 60 mA
- Sensor element: platinum temperature sensor PT500
- Analogue output 0-10 Vdc/0-20 mA
- Digital relay output
- Modbus RTU on board
- Downloadable set-up software

Description

These room temperature sensors provide precision sensing, compatible with all leading control systems. They are designed to provide fast response to changes in thermal comfort conditions. Each unit is equipped with a platinum sensor and has a $0-10 \mathrm{Vdc} / 0-20 \mathrm{~mA}$ analogue output and relay digital signal.

They include on board Modbus RTU and although pre-set for normal operations can be site set via downloadable software.

Wiring Diagram

A - RS485 signal A /B - RS485 signal /B GND - ground
AO1 - analogue output
GND - ground

+ V 15-24 VAC $\pm 10 \% / 18-34$ VDC $\pm 10 \%$
GND - ground
NC1 - relay output - normally closed (230 VAC/2 A)
COM1 - relay output - common ($230 \mathrm{VAC} / 2 \mathrm{~A}$)
NO1 - relay output - normally open (230 VAC/2 A

Dimensions \& Weights

C

A

D

Amps	A (mm)	B (mm)	C (mm)	$\mathrm{D}(\mathrm{mm})$	Net (g)	Grosst (g)
SDXT	105	75	26	60	110	120

Mounting Instructions

Technical data
Supply voltage: $18-32 \mathrm{VDC} \pm 10 \% / 15-24 \mathrm{VAC} \pm 10 \%$
Operating temperature range: $-10 \ldots 50^{\circ} \mathrm{C}$
Relay output: 230 VAC/2 A
Enclosure: plastic ABS, V0, RAL9010 ivory,
Ingress Protection: IP30
Wiring (see previous page)
Mounting
The device is to be mounted in a room on a smooth surface, preferably at a minimum height of 1.50 m above the floor.

Transport and stock keeping
Avoid shocks. Stock in original packing. Avoid extreme conditions.

Warranty

Two years from delivery date against defects in manufacturing. Any modifications or alterations to the product relieve the manufacturer of all responsibility. The manufacturer bears no responsibility for any misprints or mistakes in this data, and modifications or improvements to the product can be made at any time after date of publication.

Maintenance
In normal conditions the controllers are maintenance-free. If soiled clean with dry or damp cloth. In case of heavy pollution clean with a non-aggressive product. In these circumstances
the controller should be disconnected from the mains. Pay attention that no fluids enter the controller. Only reconnect the controller to the mains when it is completely dry.

All works may only be carried out by skilled personnel following the local regulations, reference to the installation guide and AFTER the controller is completely separated from the mains.

SDXC - Room CO Sensor/Switch Controller
 for Demand Proportional \& Switched Drives

Features

- Supply voltage: $15-24 \mathrm{VAC}$ or 18 34VDC
- Microcontroller based design increases accuracy and reduces installation time
- Modbus RTU (RS485)
- Software for configuration
- IP30 Ingress protection
- LED operation indication
- Excellent long term stability with NDIR CO ${ }_{2}$ sensor
- Innovative self-calibrating algorithm
- Sensor and switch combined
- C/O relay output
- Analogue output: 0-10 VDC/0-20 mA
- Different CO_{2} ranges selectable by jumper or via Modbus
- Setpoint selectable by trimmer
- Operating conditions: -10 to $50^{\circ} \mathrm{C}$ and 0-95 \% RH

Description

These CO_{2} sensor/switches provide a stable, secure environment with high energy performance.

The concentration of CO_{2} in the air is measured (with four predefined ranges or a user-definable range), using a self-calibrated and maintenance-free sensor with NDIR technology.

The SDXC is fully configurable via Modbus RTU RS485 communications and is compatible with most building management systems. Although pre-set, software is made freely available for after sales configuration.

Range

Model	Description	Part
SDXC	Room CO_{2} Sensor/Switch controller with Modbus RTU	EAOO2101

Wiring Diagram

A - RS485 signal A
/B - RS485 signal /B
GND - ground
AO1 - analogue output
GND - ground

+ V 15-24 VAC $\pm 10 \% / 18-34$ VDC $\pm 10 \%$
GND - ground
NC1 - relay output - normally closed ($230 \mathrm{VAC} / 2 \mathrm{~A}$)
COM1 - relay output - common ($230 \mathrm{VAC} / 2 \mathrm{~A}$)
NO1 - relay output - normally open (230 VAC/2 A)

Settings

Jumper reset Modbus settings

Jumper analog output

Jumper hysteresis value

Jumper sensor range

12345	Sensor range
0000	$0-2.000 \mathrm{ppm}$
0000	$0-1.500 \mathrm{ppm}$
000	$0-1.000 \mathrm{ppm}$
000	$450-1.850 \mathrm{ppm}$

Jumper Network Bus Termination Resistor

Trimmer setpoint

MIN: minimum of the sensor range
MAX: maximum of the sensor range

Settings

Operation Graph

The output voltage starts to rise from 0 VDC at minimum sensor range and reaches 10 VDC at maximum sensor range.

The relay switches on at an adjusted setpoint by trimmer and switches off again with an adjusted hysteresis selected by jumpers.

Input Registers (read)

		Data Type	Description	Data	Values
1			Reserved, returns 0		
2			Reserved, returns 0		
3			Reserved, returns 0		
4	$\mathrm{CO}_{2} \mathrm{ppm}$	unsigned int.	Actual CO_{2}, level		$2.000=2.000 \mathrm{ppm}$
5			Reserved, returns 0		
6			Reserved, returns 0		
7			Reserved, returns 0		
8			Reserved, returns 0		
9			Reserved, returns 0		
10			Reserved, returns 0		

		Data Type	Description	Data	Values
11	Analog output	signed int.	Actual analog output value	0-1.000	$\begin{gathered} 0=0 \mathrm{VDC} \\ 1.000=10,00 \mathrm{VDC} \end{gathered}$
12	Relay status	signed int.	Actual status of relay	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0=\text { off } \\ & 1=\text { on } \end{aligned}$
13	CO_{2} range	signed int.	Actual CO_{2}, range active selected by jumper holding register		$\begin{aligned} & 1(450-1850 \mathrm{ppm}) \\ & 2(0-1.000 \mathrm{ppm}) \\ & 3(0-1.500 \mathrm{ppm}) \\ & 4(0-2.000 \mathrm{ppm}) \end{aligned}$
14	CO_{2} set point	signed int.	Actual CO_{2}, setpoint active setpoint selected by trimmer or holding register		$2.000=2.000 \mathrm{ppm}$
15	Hysteresis	signed int.	Hystersis for relay, selectable by jumpers	$\begin{gathered} 25 \\ 50 \\ 75 \\ 100 \end{gathered}$	50=50ppm
16	Setpoint our of range flag	signed int.	Flagt that shows when setpoint is out of sensor range	O=OK	0-1
				1 = setpoint out of range	
17	Calibration timer	unsigned int.	Returns passed in \% for 10 min calibration precedure in progress, if in active returns 0	0-100	0-100\%
18			Reserved, returns 0		
19			Reserved, returns 0		
20			Reserved, returns 0		

Holding Registers (Read/Write)

		Data Type	Description	Data	Values
1	Device address	unsigned int.	Device address	$\begin{gathered} 1-247 \\ \text { (default: } 1 \text {) } \end{gathered}$	
2	RS485 baud rate	unsigned int.	Modbus communication baud rate	$\begin{gathered} 1-9.600 \\ 2=19.200 \\ \text { (default) } \\ 3=38.400 \\ 4=57.600 \end{gathered}$	
3	RS485 parity mode	unsigned int.	Parity check mode	$\begin{gathered} 0=8 \mathrm{~N} 1 \\ 1=8 \mathrm{E} 1 \\ 2=801 \text { (default) } \end{gathered}$	
4	Device type	unsigned int.	Device type, read-only	RXC-G=2	
5	HW Version	signed int.	Hardware version of the device, read-only	XXX	$\begin{gathered} 300=H W \text { version } \\ 3.00 \end{gathered}$
6	SW Version	signed int.	Software version of the device, read-only	XXX	$\begin{gathered} 130=5 W \text { version } \\ 1.30 \end{gathered}$
7	Modbus Control	signed int.	Enables Modbus control and disables jumpers and trimmers	$\begin{aligned} & \text { O=disable } \\ & 1=\text { enable } \end{aligned}$	
8	Modbus direct control	signed int.	Enables direct control over outputs	$\begin{aligned} & 0=\text { disable } \\ & 1=\text { enable } \end{aligned}$	
9			Reserved, returns 0		
10			Reserved, returns 0		
11	CO_{2} range	signed int.	CO_{2} rnage selection	$\begin{gathered} 1 \text { (default) } \\ 2 \\ 3 \\ 4 \\ 5 \end{gathered}$	$\begin{gathered} 1(450-1850 \mathrm{ppm}) \\ 2(0-1.000 \mathrm{ppm}) \\ 3(0-1.500 \mathrm{ppm}) \\ 4(0-2.000 \mathrm{ppm}) \\ 5 \text { custom } \end{gathered}$
12	CO_{2} custom range min	signed int.	CO_{2} custom range min	O-max (default:O)	$\begin{gathered} 1.000=1.000 \\ \mathrm{ppm} \end{gathered}$
13	CO_{2} custom range max	signed int.	CO_{2} custom range max	$\begin{gathered} \min -2.000 \\ \text { (default:2.000) } \end{gathered}$	$\begin{gathered} 2.000=2.000 \\ \text { ppm } \end{gathered}$
14	CO_{2} setpoint	signed int.	Setpoint for CO_{2} relay		$\begin{gathered} 2.000=2.000 \\ \mathrm{ppm} \end{gathered}$
15	10 minute calibration	signed int.	Setting this to 1 will perform 10 minute calibration and will automatically be cleared after calibration, the sensor measures CO_{2} level for 10 min . and sets the lowest value at 400ppm (do not switch off during this procedure!).	$\begin{gathered} \mathrm{O} \text { (default) } \\ 1 \end{gathered}$	$1 \text { = } 10 \mathrm{~min} .$ calibration active
16	1 month calibration	signed int.	Setting this to 1 will turn on 1 month calibration and is not autmatically cleared after the calibration, the sensor measures CO_{2} level for 1 month and sets the lowest value at 400 ppm (do not switch off during this procedure!]	$\begin{gathered} \mathrm{O} \text { (default) } \\ 1 \end{gathered}$	$1=1$ month calibration active
17			Reserved, returns 0		
18			Reserved, returns 0		
19			Reserved, returns 0		
20			Reserved, returns 0		
21	Analog output overide	signed int.	Override value, active only if registers 7 and 8 are set to ' 1 '	0-1.000 (default:O)	$\begin{gathered} 0=0.00 \mathrm{VDC} \\ 1.000=10.00 \mathrm{VDC} \end{gathered}$
22			Reserved, returns 0		
23			Reserved, returns 0		
24			Reserved, returns 0		
25			Reserved, returns 0		
26			Reserved, returns 0		
27			Reserved, returns 0		
28			Reserved, returns 0		
29			Reserved, returns 0		
30			Reserved, returns 0		

Coils (Read/Write)

	Data Type	Description
1-Relay 1	bit	Available only if holding registers 7 and 8 and set to '1'

Dimensions \& Weights

Model	$\mathrm{A}(\mathrm{mm})$	$\mathrm{B}(\mathrm{mm})$	$\mathrm{C}(\mathrm{mm})$	$\mathrm{D}(\mathrm{mm})$	Net (g)	Gross (g)
SDXC	105	75	26	60	110	120

Mounting Instructions

Technical data
Supply voltage: $18-32$ VDC $\pm 10 \% / 15-24$ VAC $\pm 10 \%$
Power consumption normal: up to 75 mA , peak: 400 mA for 10 ms per 3
sec period
Accuracy: $\pm 50 \mathrm{ppm}$
Operating temperature range: $-10 \ldots 50^{\circ} \mathrm{C}$
Relay output: 230 VAC/2 A
Enclosure: plastic ABS, V0, RAL9010 ivory,
Ingress Protection: IP30
The CO_{2} room sensor/switch measures the concentration of CO_{2} from 450 to 1850 ppm in air using a NDIR sensor which is self-calibrating and maintenance-free in a normal environment.

Wiring (see diagram on previous page)
Mounting
The device is to be mounted in a room on a smooth surface, preferably at a minimum height of 1.50 m above the floor.

Transport and stock keeping
Avoid shocks. Stock in original packing. Avoid extreme conditions.
Warranty
Two years from delivery date against defects in manufacturing. Any modifications or alterations to the product relieve the manufacturer of all responsibility. The manufacturer bears no responsibility for any misprints or mistakes in this data, and modifications or improvements to the product can be made at any time after date of publication.

Maintenance
In normal conditions the controllers are maintenance-free. If soiled clean with dry or damp cloth. In case of heavy pollution clean with a non-aggressive product. In these circumstances
the controller should be disconnected from the mains. Pay attention that no fluids enter the controller. Only reconnect the controller to the mains when it is completely dry.

General danger

Electrical hazard

All works may only be carried out by skilled personnel following the local regulations, reference to the installation guide and AFTER the controller is completely separated from the mains.

SDSI - Room Passive Infrared Switch for Demand Switched Drives (PIR)

Features

- Input voltage: 25VDC
- Relay Output: OC 250V 2A
- Nominal Max Range: 15 m
- Flush mounting in standard wall box

Description

The SDSI passive infrared (PIR) switch is ideal for mounting in a standard wall backing box. Three adjustment pots allow for delay, sensitivity and range to be adjusted ensuring that the controlling relay only closes when the room or space is occupied.

Range

Model	Description	Part
SDSI	Room Passive Infrared for switched output (PIR)	EAOO2102

Wiring Diagram

Plan
Side

Mounting Instructions

Technical data
Supply voltage: 18-32 VDC ± 10 \%
Power consumption normal: up to 75 mA , peak: 400 mA for 10 ms per 3 sec period
Operating temperature range: -10 to $50{ }^{\circ} \mathrm{C}$
Relay output: 250 VAC 2A
Enclosure: plastic ABS, V0, Ivory,
Ingress Protection: IP30
Wiring (see diagram)

Mounting

The device is to be mounted in a room on a smooth surface, preferably at a minimum height of 1.50 m above the floor.

Transport and stock keeping
Avoid shocks. Stock in original packing. Avoid extreme conditions.

Warranty

Two years from delivery date against defects in manufacturing. Any modifications or alterations to the product relieve the manufacturer of all responsibility. The manufacturer bears no responsibility for any misprints or mistakes in this data, and modifications or improvements to the product can be made at any time after date of publication.

Maintenance

In normal conditions the controllers are maintenance-free. If soiled clean with dry or damp cloth. In case of heavy pollution clean with a non-aggressive product. In these circumstances
the controller should be disconnected from the mains. Pay attention that no fluids enter the controller. Only reconnect the controller to the mains when it is completely dry.

All works may only be carried out by skilled personnel following the local regulations, reference to the installation guide and AFTER the controller is completely separated from the mains

Features

- Max. operating pressure: 10 KPa for all pressure ranges
- Operating temperature: -20 to $85^{\circ} \mathrm{C}$
- Storage temperature -40 to $85^{\circ} \mathrm{C}$
- Contacts rating: 250 VAC, 1.5 A
- IP Protection: 54
- Mechanical life cycles: +10 million operations
- Materials: Diaphragm: Silicone, Case: PA 6.6 an POM

Description

These adjustable highly sensitive differential pressure switches are used for monitoring over pressure, vacuum and differential pressure of air or other non-combustible, non-aggressive gases.

The switching set-point can be adjusted by means of a calibrated knob.
Possible applications are air filters, fan monitoring, overheat protection for electric elements, controlling air- and fire-protection dampers, monitoring air flows and more.

Range

Model	Description	Part
SDSP54-500	Pressure switch 50-500Pa DP Pa 20	EAOO2103
SDSP54-1000	Pressure switch 200-1000Pa DP Pa 100	EA002104

Wiring Diagram

Drawing

$\begin{array}{ll}\text { 1. } & \text { Break contact } \\ \text { 2. } & \text { Operating contact } \\ \text { 3. } & \text { Power }\end{array}$

Mounting Instructions

Differential pressure switch
Technical data
Range Pa
PSW-500: 50-500
PSW-1000: 200-1000
Max. operating pressure 50 mBar or 5000 Pa
Operating temperature $-20-85^{\circ} \mathrm{C}$
Contacts rating 250 VAC, 1.5 A
Mechanical life cycles +- 10 million operations
IP protection IP 54
Diaphragm Silicone
Case PA 6.6 and POM

These adjustable high sensitive differential pressure switches are used for monitoring overpressure, vacuum and differential pressure of air or other non-combustible, non-aggressive gases. The switching setpoint can be adjusted by means of a calibrated knob. The switching differential P can be adjusted with a screw driver.

Possible applications are:
Air filters and fan monitoring
Overheating protection for electric batteries or electric heating
elements
Controlling air- and fire-protection dampers
Monitoring air flows

Warranty
Two years from delivery date against defects in manufacturing. Any modifications or alterations to the product relieve the manufacturer of all responsibility. The manufacturer bears no responsibility for any misprints or mistakes in this data, and modifications or improvements to the product can be made at any time after date of publication.

Transport and stock keeping
Avoid shocks. Stock In original packing. Avoid extreme conditions
Maintenance
In normal conditions the controllers are maintenance-free. If soiled clean with dry or damp cloth. In case of heavy pollution clean with a non-aggressive product. In these circumstances
the controller should be disconnected from the mains. Pay attention that no fluids enter the controller. Only reconnect the controller to the mains when it is completely dry.

General danger

Electrical hazard

All works may only be carried out by skilled personnel following the local regulations, reference to the installation guide and AFTER the controller is completely separated from the mains.

SDXP54 - Pressure Sensor Controller

Features

- Supply: 15-24 VAC $\pm 10 \% / 18-32$ VDC ± 10 \%
- Modbus RTU on board RS485
- Auto-tune function
- Analogue output: 0-10 V/0-20 mA
- Digital output: PWM (open collector)
- Response time: $0.5,1,2$ or 5 seconds
- Operating temperature: $10-60^{\circ} \mathrm{C}$ (temperature compensated)
- Offset calibration procedure
- Selection of differential pressure or air volume mode/readout via Modbus
- Modbus registers reset function (Factory pre-set values)
- Aluminium pressure connection nozzles
- Usage in clean air and nonaggressive, non-combustible gases
- Long-term stability and accuracy
- Selectable Response time
- IP54 (according to EN 60529)
- Downloadable software and SDPUSB compatible

Description

The SDXP54 is a multi-range differential pressure transmitter with an analogue/digital output and Modbus RTU communication. This calibrated pressure transmitter has eight switchable measuring ranges and is equipped with a state-of-the-art monolithic silicon pressure sensor designed for a wide range of applications.

The piezo-resistive transducer is temperature and pressure compensated and has a high degree of reliability and accuracy. The transmitter has a pushbutton to activate manual zero point calibration and an adjustable offset. Typical applications are medical technology, ventilation and air conditioning ducts, clean rooms and filter monitoring. The sensor can measure air or other non-aggressive, noncombustible gases.

Ideal for variable air volume constant pressure (VAV) and constant air volume (CAV) systems.

Range

Model	Description	Part
SDXP54-2000	Pressure sensor controller 0-2000Pa with Modbus RTU	EA002105

Wiring Diagram

Vin - $15-24$ VAC $\pm 10 \% / 18-32$ VDC $\pm 10 \%$
GND - Ground
A - RS485 signal A
/B - RS485 signal /B
AO1 - Analogue ($0-10 \mathrm{VDC} / 0-20 \mathrm{~mA}$) or digital output (PWM)
GND - Ground
LED green - Normal
Power on red: calibration done and Modbus parameters reset

45	Time
\#n	0,5 sec
08	1 sec (default)
88	2 sec
88	5 sec

Switch analog output mode selection

Switch calibration

Jumper setting range

$$
100-+100 \mathrm{~Pa}
$$

Jumper response time

Input Registers (read)

		Data Type	Description	Data	Values
1	Differential pressure	signed int.	Measured differential pressure	-100-2.000	$1.000=1.000 \mathrm{~Pa}$
2	Output Value	unsigned int.	Value of output 0-100\%	0-1.000	$100=10.0 \%$
3	Max pressure limit flag	unsigned int.	Flag indicates pressure is over or below max. limit	$\mathrm{O}=$ below limit $1=$ over limit $2=$ value written in Holding register 14 is out of range $-100-2000 \mathrm{~Pa}$	
4	Min pressure limit flag	unsigned int.	Flag indicates pressure is over or below min. limit	$\mathrm{O}=$ over limit 1=below limit $2=$ value written in Holding register 14 is out of range $-100-2000 \mathrm{~Pa}$	
5	Volume flow rate	unsigned int.	Air volume flow rate is $\mathrm{m}^{3} / \mathrm{h}$	0-44.000	$1.000=1.000 \mathrm{~m}^{3} / \mathrm{h}$
6		unsigned int.	Reserved, returns 0		
7	Differential pressure range	unsigned int.	Flag indicates current range of SPS-2KO	$\begin{gathered} 0=0-100 \mathrm{~Pa} \\ 1=0-250 \mathrm{~Pa} \\ 2=0.500 \mathrm{~Pa} \\ 3=0.750 \mathrm{~Pa} \\ 4=0-1.000 \\ 5=0-2.000 \mathrm{~Pa} \\ 6=-50-50 \mathrm{~Pa} \\ 7=-100-100 \mathrm{~Pa} \end{gathered}$	

Holding Registers (read/write)

		Data Type	Description	Data	Values
1	Address	unsigned int.	Device address	$\begin{gathered} \text { 1-247 } \\ \text { (default:1) } \end{gathered}$	
2	RS485 baud rate	unsigned int.	Modbus communication baud rate	$\begin{gathered} 1-9.600 \\ 2=19.200 \text { (default) } \\ 3=38.400 \end{gathered}$	
3	RS485 parity mode	unsigned int.	Parity check mode	$\begin{gathered} 0=8 \mathrm{~N} 1 \\ 1=8 \mathrm{E} 1 \\ 2=801 \text { (default) } \end{gathered}$	
4	Device type	unsigned int.	Device type: read-only	SPS=8	
5	HW Version	unsigned int.	Hardware version of the device, read-only	XXX	$\begin{aligned} & 100=\mathrm{HW} \\ & \text { version } .00 \end{aligned}$
6	SW Version	unsigned int.	Software version of the device, read-only	XXX	$\begin{aligned} & 5000=S W \\ & \text { version } 5.00 \end{aligned}$
7			Reserved, returns 0		
8			Reserved, returns 0		
9			Reserved, returns 0		
10			Reserved, returns 0		
11	Mode	unsigned int.	Operating mode of SPS-2KO	$\begin{gathered} 1=\text { standalone } \\ 2=\begin{array}{c} \text { Modbus mode mode } \\ \text { (default) } \end{array} \end{gathered}$	
12	Range	unsigned int.	SPS-2KO Range Selection	$\begin{gathered} 0=0-100 \mathrm{~Pa} \\ 1=0-250 \mathrm{~Pa} \\ 2=0.500 \mathrm{~Pa} \\ 3=0.750 \mathrm{~Pa} \\ 4=0-1.000 \\ 5=0-2.000 \mathrm{~Pa} \\ 6=-50.50 \mathrm{~Pa} \\ 7=-100-100 \mathrm{~Pa} \end{gathered}$	
13	Response Time	unsigned int.	SPS-2KO Response Time Selection	$\begin{gathered} 0=0.5 \mathrm{~s} \\ 1=1 \mathrm{~s} \\ 2=2 \mathrm{~s} \\ 3=3 \mathrm{~s} \end{gathered}$	
14	Max Pressure Limit	signed int.	SPS-2KO Maximum Pressure Limit	$\begin{gathered} -100-2.000 \text { (default: } \\ 1.000 \text {) } \end{gathered}$	$1.000=1.000 \mathrm{~Pa}$
15	Min Pressure Limit	signed int.	SPS-2KO Minimum Pressure Limit	-100-2000 (default:0)	$1.000=1.000 \mathrm{~Pa}$
16	Power-up Timer	unsigned int.	Power up timer before measure the lower limit	0-1.000 (default: 60)	100=100 s
17	K factor selection register	unsigned int.	K factor according to the motor type	0-1.000 (default:0)	$\mathrm{O}=$ differential pressure management
18			Reserved, returns 0		
19			Reserved, returns 0		
20			Reserved, returns 0		

Reset Modbus registers

- Press button SW2 for four seconds until the red LED on the printed circuit board blinks twice
- Keep pressing until the red LED blinks three times, the Modbus registers are restored to their default (factory preset) values

Constant Pressure with DP1S

PWM (open collector) connection example

Connection of multiple SPS to BMS system in a networ

Dimensions \& Weights

fig. 2

Model	Net weight (g)	Gross weight (g)
SDXP54	120	150

Mounting Instructions

Warranty
Two years from delivery date against defects in manufacturing. Any modifications or alterations to the product relieve the manufacturer of all responsibility. The manufacturer bears no responsibility for any misprints or mistakes in this data, and modifications or improvements to the product can be made at any time after date of publication.

Transport and stock keeping
Avoid shocks. Stock In original packing. Avoid extreme conditions
Maintenance
In normal conditions the controllers are maintenance-free. If soiled clean with dry or damp cloth. In case of heavy pollution clean with a non-aggressive product. In these circumstances
the controller should be disconnected from the mains. Pay attention that no fluids enter the controller. Only reconnect the controller to the mains when it is completely dry.

General danger

Electrical hazard

All works may only be carried out by skilled personnel following the local regulations, reference to the installation guide and AFTER the controller is completely separated from the mains.

SDPT54 - Room Temperature Sensor Controller for Demand Proportional Drives

Features

- Built-in PT1000 temperature sensor
- IP54 ingress protection, ABS colour RAL7035
- Digital readout and step indication with LED's
- 5 user definable setpoints
- Modbus RTU (RS485) \& set up software
- 15-24 VAC $\pm 10 \% / 12-32$ VDC $\pm 10 \%$
- 1 analogue input (0-10 VDC/0-20 mA/PWM) *
- 1 analogue output (0-10 VDC/020 mA) or 1 digital output (PWM, open collector)
- Temperature range: -30 to $70^{\circ} \mathrm{C}$ *
- Power consumption 15-24 VAC supply: max. 70 mA (no load on AO1) or 12-32 VDC supply: max. 85 mA (no load on AO1)
- Operating temperature: -10 to $50^{\circ} \mathrm{C}$

Description

The SDPT54 multifunctional controller series provides a temperature and/or an analogue input ($0-10 \mathrm{VDC} / 0-20 \mathrm{~mA} / \mathrm{PWM}$) and a userdefined analogue output (0-10 VDC/0-20 $\mathrm{mA} / \mathrm{PWM}$) in five steps.

IP 54 rating makes this sensor ideal for use in small industrial or heavy commercial applications.

This controller is equipped with digital readout and step-indication with LED's enabling simple touch pad setup.

Combined with freely downloadable set up software and the SDPUSB connector; advanced programmable inputs and outputs make these controllers suitable for use in most HVAC applications.

Wiring Diagram

+V - power supply: $15-24 \mathrm{VAC} \pm 10 \% / 12-32 \mathrm{VDC} \pm 10 \%$ GND - ground
Ai1 - analogue ($0-10 \mathrm{VDC} / 0-20 \mathrm{~mA}$) or digital input GND - ground
T1 - connection for temperature sensor
A /B - Modbus RTU (RS485) connection signals
GND - ground
+5 V - output $5 \mathrm{VDC} /$ max 20 mA
GND - ground
AO1 - analogue ($0-10 \mathrm{VDC} / 0-20 \mathrm{~mA}$) or digital output (PWM)
GND - ground

Switch analog input mode selection

Switch analog input mode selection

\qquad

Jumper Network Bus Termination Resistor

Jumper PWM

Holding Registers (read/write)

		Data Type	Description	Data	Values
1	Measured temperature	signed int.	Actual temperature input	-300-700	$-300-30^{\circ} \mathrm{C}$
2	Input Signal	unsigned int.	Actual analog input	0-1.000	$700-70^{\circ} \mathrm{C}$
3	Output value	unsigned int.	Actual analog output	0-1.000	$100=10,00 \mathrm{VDC} / 2,00$ mA/10\% PWM
4	SP1	signed int.	Temperture/analog setpoint 1	-300-1.000	
5	SP2	signed int.	Temperture/analog setpoint 2	-300-1.000	$\begin{aligned} & -300=-30^{\circ} \mathrm{C} \\ & -700=70^{\circ} \mathrm{C} \end{aligned}$
6	SP3	signed int.	Temperture/analog setpoint 3	-300-1.000	$\begin{gathered} 0=0 \text { VDC } \\ 1.000=10,00 \mathrm{VDC} \end{gathered}$
7	SP4	signed int.	Temperture/analog setpoint 4	-300-1.000	$\begin{gathered} \mathrm{O}=0 \mathrm{VDC} \\ 1.000=20,00 \mathrm{~mA} \end{gathered}$
8	SP5	signed int.	Temperture/analog setpoint 5	-300-1.000	0=0\% PWM $1.000=100 \%$ PWM
9	Output 1	unsigned int.	Output 1	0-1.000	
10	Output 2	unsigned int.	Output 2	0-1.000	100=1,00VDC/2,00 mA/10\% PWM
11	Output 3	unsigned int.	Output 3	0-1.000	1.000=10,00VDC/20,00 mA/10\% PWM
12	Output 4	unsigned int.	Output 4	0-1.000	
13	Output 5	unsigned int.	Output 5	0-1.000	
14			Reserved, returns 0		
15			Reserved, returns 0		
16			Reserved, returns 0		
17			Reserved, returns 0		
18			Reserved, returns 0		
19			Reserved, returns 0		

Input Registers (read)

		Data Type	Description	Data	Values
1	Device address	unsigned int.	Device address	1-247 (default:1)	
2	RS485 baud rate	unsigned int.	Modbus communication baud rate	$\begin{gathered} \begin{array}{c} \text { 1-9.600 } \\ 2=19.200 \\ \text { (default) } \\ 3=38.400 \end{array} \end{gathered}$	
3	RS485 parity mode	unsigned int.	Parity check mode	$\begin{gathered} 0=8 \mathrm{~N} 1 \\ 1=8 \mathrm{E} 1 \text { (default) } \\ 2=801 \end{gathered}$	
4	Device type	unsigned int.	Device type, read-only	20	$20=$ DTA-G
5	HW Version	unsigned int.	Hardware version of the device, read-only	XXX	$300=$ HW version 3.00
6	SW Version	unsigned int.	Software version of the device, read-only	XXX	$130=$ SW version 1.30
7			Reserved, returns 0		
8			Reserved, returns 0		
9	Input mode	unsigned int.	Depends on chosen input	0-2 (defaut:0)	O-main screen 1-temperature input 2 -analog input
10	Hysteresis	signed int.	Input hysteresis	0-2 (defaut:0)	$\begin{aligned} & \mathrm{O}=2 \% / 0.2^{\circ} \mathrm{C} \\ & 1=5 \% / 0.5^{\circ} \mathrm{C} \\ & 2=10 \% / 1^{\circ} \mathrm{C} \end{aligned}$
11	SP1	signed int.	Temperature setpoint 1	$-300-700$ (default:210)	
12	SP2	signed int.	Temperature setpoint 2	$\begin{aligned} & \begin{array}{l} -300-700 \\ \text { (defaut::220) } \end{array} \end{aligned}$	$-300=30^{\circ} \mathrm{C}$
13	SP3	signed int.	Temperature setpoint 3	$\begin{aligned} & -300-700 \\ & \text { (default:230) } \end{aligned}$	$700=70^{\circ} \mathrm{C}$
14	SP4	signed int.	Temperature setpoint 4	$\begin{aligned} & \text {-300-700 } \\ & \text { (default:240) } \end{aligned}$	
15	SP5	signed int.	Temperature setpoint 5	$\begin{aligned} & -300-700 \\ & \text { (defaut::250) } \end{aligned}$	
16	Output 1	unsigned int.	Output 1	$\begin{aligned} & \text { 0-1.000 } \\ & \text { (default:200) } \end{aligned}$	
17	Output 2	unsigned int.	Output 2	$\begin{gathered} \text { 0-1.000 } \\ \text { (defaut:400) } \end{gathered}$	100=1,00 VDC/2.00 mA/10\% PWM
18	Output 3	unsigned int.	Output 3	$\begin{aligned} & \text { O-1.000 } \\ & \text { (defaut::600) } \end{aligned}$	$1.000=10,00 \mathrm{VDC} / 20,00$ mA/10\% PWM
19	Output 4	unsigned int.	Output 4	$\begin{aligned} & \text { 0-1.000 } \\ & \text { (default:800) } \end{aligned}$	
20	Output 5	unsigned int.	Output 5	$\begin{aligned} & \text { 0-1.000 } \\ & \text { (default:1.000) } \end{aligned}$	
21	SP1	unsigned int.	Analog setpoint 1	$\begin{aligned} & \text { 0-1.000 } \\ & \text { (defaut::200) } \end{aligned}$	
22	SP2	unsigned int.	Analog setpoint 2	$\begin{aligned} & \text { O-1.000 } \\ & \text { (default:400) } \end{aligned}$	
23	SP3	unsigned int.	Analog setpoint 3	$\begin{aligned} & \text { 0-1.000 } \\ & \text { (default:600) } \end{aligned}$	$\underset{\text { PWM }}{100=1,00 \mathrm{VDC} / 2.00 \mathrm{~mA} / 10 \%}$
24	SP4	unsigned int.	Analog setpoint 4	$\begin{gathered} \text { O-1.000 } \\ \text { (defaut:800) } \end{gathered}$	$1.000=10,00 \mathrm{VDC} / 20,00$ mA/10\% PWM
25	SP5	unsigned int.	Analog setpoint 5	$\begin{aligned} & \text { 0-1.000 } \\ & \text { (default:1.000) } \end{aligned}$	
26	Output 1	unsigned int.	Output 1	$\begin{aligned} & \text { 0-1.000 } \\ & \text { (defaut::200) } \end{aligned}$	
27	Output 2	unsigned int.	Output 2	$\begin{aligned} & \text { O-1.000 } \\ & \text { (defaut: } 400 \text {) } \end{aligned}$	
28	Output 3	unsigned int.	Output 3	$\begin{aligned} & \text { 0-1.000 } \\ & \text { (defaut:600) } \end{aligned}$	
29	Output 4	unsigned int.	Output 4	$\begin{aligned} & \text { 0-1.000 } \\ & \text { (default:800) } \end{aligned}$	
30	Output 5	unsigned int.	Output 5	$\begin{aligned} & \text { 0-1.000 } \\ & \text { (default:1.000) } \end{aligned}$	

Drawings and Dimensions

	Weight
DTA-G-XXX-A	130 g
DTA-G-XXX	131 g
DTA-G-A	130 g
DTA-G	131 g

Mounting Instructions

Technical data
Supply voltage: $15-24 \mathrm{VAC} \pm 10 \% / 12-32 \mathrm{VDC} \pm 10 \%$
Operating temperature range: -10 to $50^{\circ} \mathrm{C}$
Enclosure: plastic ABS, RAL7035
Ingress Protection: IP5430
Wiring (see previous page diagram)

Mounting

The device is to be mounted in a room on a smooth surface, preferably at a minimum height of 1.50 m above the floor.

Transport and stock keeping
Avoid shocks. Stock in original packing. Avoid extreme conditions.

Warranty

Two years from delivery date against defects in manufacturing. Any modifications or alterations to the product relieve the manufacturer of all responsibility. The manufacturer bears no responsibility for any misprints or mistakes in this data, and modifications or improvements to the product can be made at any time after date of publication.

Maintenance

In normal conditions the controllers are maintenance-free. If soiled clean with dry or damp cloth. In case of heavy pollution clean with a non-aggressive product. In these circumstances
the controller should be disconnected from the mains. Pay attention that no fluids enter the controller. Only reconnect the controller to the mains when it is completely dry.

General danger

Electrical hazard

All works may only be carried out by skilled personnel following the local regulations, reference to the installation guide and AFTER the controller is completely separated from the mains.

SDPUSB - USB to Modbus RTU RS485 Connector

Features

- Easy plug \& play installation. Downloadable software
- LED indication for receiving and transmitting signals
- Compatible with USB 1.1 and 2.0
- Installs as a standard Windows COM port
- USB port powered (Type A connector)
- Modbus RTU RS485 A, /B and GND connections

Description

The SDPUSB is a self-powered USB to Modbus RTU (RS485) module. The Modbus RTU serial information is automatically converted to serial information on a USB virtual COM port for both transmitted and received communication.

Range

Model	Description	Part
SDPUSB	USB to Modbus RTU 485 Connector	EAOO2120

Wiring Diagram

A - RS485 signal A
/B - RS485 signal /B
GND - ground
Parity - none, even and odd
Data bits -7 \& 8
Flow control - none

Drawing and Dimensions

	A	B	C	weight
SDPUSB	23	71	8,7	12 g

Mounting Instructions

Connect only to USB ports (Type A connector) and RS485 A /B GND
terminals.

COM port number can be changed to any available number, to support HyperTerminal or any
other serial communications software application running in Windows Microsoft Windows® WHQL-certified, Mac OS X, Linux and Windows CE device drivers.

FIFO: 128 byte transmit buffer, 256 byte receive buffer
ESD protection for RS485 in \& outputs : $\pm 15 \mathrm{kV}$ Human Body Model
(HBM) and $\pm 15 \mathrm{kV}$
EN61000-4-2 Air Gap Discharge, ± 8 kV EN61000-4-2 Contact Discharge
Parity: none, even, odd
Data bits: 7, 8
Flow control: none

Technical data
Operating temperature: $-10+50^{\circ} \mathrm{C}$

Wiring (see diagram on previous page)
The cable connecting the device control should not exceed 4 m .
Transport and stock keeping
Avoid shocks and extreme conditions, stock in original packing.
Warranty
Two years from delivery date against defects in manufacturing. Any modifications or alterations to the product relieve the manufacturer of all responsibility. The manufacturer bears no responsibility for any misprints or mistakes in this data, and modifications or improvements to the product can be made at any time after date of publication.

Maintenance
In normal conditions the controllers are maintenance-free. If soiled clean with dry or damp cloth. In case of heavy pollution clean with a non-aggressive product. In these circumstances the controller should be disconnected from the mains. Pay attention that no fluids enter the controller. Only reconnect the controller to the mains when it is completely dry.

General danger

Electrical hazard

All works may only be carried out by skilled personnel following the local regulations, reference to the installation guide and AFTER the controller is completely separated from the mains

Potentiometers \& Power Supply SDPV-10 Room Potentiometer

Features

- Minimum (Vmin) and maximum (Vmax) output setting by internal trimmer
- IP rating flush mounting: IP44, surface mounting: IP54
- Enclosure external: plastic ASA, RAL 9010 white-ivory
- Enclosure internal: polyamide according to IEC 60335
- Operating temperature: $0 . . .40^{\circ} \mathrm{C}$
- Supply (Vin) 3-15 VDC
- Vmin 10-70 \% Vin
- Vmax 30-100 \% Vin
- Load $\geq 2 \mathrm{k} \Omega$
- Consumption $\leq 10 \mathrm{~mA}$ incl. load
- Off-position

Description

These potentiometers are designed to control fans equipped with an EC motor or in any application were a DC control signal of $0-10 \mathrm{VDC}$ is required; such as demand proportional drives.
It is mounted in a splash water proof design enclosure and can be used for inset as well as for surface mounting. There

The SDPV-10 is supplied with customer adjustable min and max settings pre-set from the factory for Vmin 20% and Vmax 100%.

A supply voltage between 3 and 15 VDC is required to provide an infinitely variable output signal between two internally selectable positions: Vmin and Vmax. The load may not be lower than 2 kOhm ($\mathrm{RL} \geq 2 \mathrm{kOhm}$).

Wiring Diagram

Range

Model	Description	Part
SDPV-10	Potentiometer Out:10VDC	EA002107

Drawings and Dimensions

Mounting Instructions

Technical data
Supply (Vin) 3-15 VDC
Vmin 10-70 \% Vin Vmax 30-100 \% Vin
Load $\geq 2 \mathrm{k} \Omega$
Consumption $\leq 10 \mathrm{~mA}$ incl. load
Off-position
Enclosure external: plastic ASA, RAL 9010 white-ivory
Enclosure internal: polyamide according to IEC 60335
Operating temperature: $0 \ldots 40^{\circ} \mathrm{C}$
This potentiometer is developed to control fans equipped with an EC motor or other demand proportional drive requiring 0-10VDC input. It is mounted in a splash water proof housing and can be used for inset as well as for surface mounting. The potentiometer requires a supply between 3 VDC and 15 VDC , and it provides a stepless output signal between voltage Vmin and voltage Vmax. Vmin and Vmax are internally selectable. Position 0 is the off-position. The load cannot be lower than $2 \mathrm{k} \Omega(\mathrm{RL} \geq 2 \mathrm{k} \Omega)$.

Inset mounting (IP 44)
Connect according to the diagram. Mount the inner case to the wall with the connections pointing down. Mount cover with nut to the wall. Push knob in place at off position.

Surface mounting (IP 54)
Mount the case to the wall together with included grommets. Connect according to the diagram. Mount inner case in surface mounting case with included screws. Mount cover with nut to surface mounting case. Push knob in place at off position. When needed a 5 mm hole for condensation water is to be drilled at the bottom of the surface mounting case.

Wiring (see diagram on previous page)
The cable connecting the device control should not exceed 4 m . For a cable length between 4 and 12 m we recommend using a shielded cable. For cable longer than 12 m use the SDPV-230 device.

Transport and stock keeping
Avoid shocks and extreme conditions, stock in original packing.

Warranty

Two years from delivery date against defects in manufacturing. Any modifications or alterations to the product relieve the manufacturer of all responsibility. The manufacturer bears no responsibility for any misprints or mistakes in this data, and modifications or improvements to the product can be made at any time after date of publication.

Maintenance

In normal conditions the controllers are maintenance-free. If soiled clean with dry or damp cloth. In case of heavy pollution clean with a non-aggressive product. In these circumstances
the controller should be disconnected from the mains. Pay attention that no fluids enter the controller. Only reconnect the controller to the mains when it is completely dry.

All works may only be carried out by skilled personnel following the local regulations, reference to the installation guide and AFTER the controller is completely separated from the mains.

Potentiometers \& Power Supply SDPV-230 - Room Potentiometer

Features

- Voltage supply: 230 VAC, $50 / 60 \mathrm{~Hz}$
- Selectable output: $0-10 \mathrm{~V}, 0-20 \mathrm{~mA}$ \& PWM
- Load: $0-10 \mathrm{~V}$ and $\mathrm{PWM}>2 \mathrm{k} \Omega$ / $0-20 \mathrm{~mA}<500 \Omega$
- Minimum (Vmin) and maximum (Vmax) output setting by internal trimmer
- IP rating flush mounting: IP44, surface mounting: IP54
- Enclosure external: plastic ASA, RAL 9010 white-ivory
- Enclosure internal: polyamide according to IEC 60335
- Operating temperature: $0 . . .40^{\circ} \mathrm{C}$

Description

This potentiometer is developed to control fans equipped with an EC motor or demand proportional drives without a 10VDC output. It is mounted in a splash water proof housing and can be used for inset as well as for surface mounting.

The potentiometer needs a supply of 230 VAC , and gives a stepless output signal of 0-10 VDC or 0-20 mA and PWM between voltage Vmin and voltage Vmax. Position 0 is the off-position. The load cannot be lower than $2 \mathrm{k} \Omega(\mathrm{RL} \geq 2 \mathrm{k} \Omega)$ in $0-10 \mathrm{~V}$ output mode or higher than 500 if $0-20 \mathrm{~mA}$

Model	Description	Part
0	Potentiometer In:230VAC Out:10VDC	EA002108

Wiring Diagram

L N - power supply 230 VAC
Vout - output 0-10 VDC / 0-20 mA / PWM
Vmin - adjustment trimmer min speed
Vmax - adjustment trimmer max speed
SW switch analogue output selection: 0-10 VDC / 2: 0-20 mA / 3: PWM

Range

Drawings and Dimensions

Mounting Instructions

Technical data
Mode 0-10 V 0-20 mA PWM
Output 0, 1-10 V 0, 2-20 mA 0, $10-100 \%$ PWM
Vmin 1-7 VDC 2-10 mA 10-70 \% PWM
Vmax 3-10 VDC Vmax: 6-20 mA 30-100 \% PWM
Enclosure external: plastic, ASA, RAL 9010 white-ivory
Enclosure internal: polyamide According to IEC 60335
Operating temperature: $0 . . .40^{\circ} \mathrm{C}$
This potentiometer is developed to control fans equipped with an ECmotor. It is mounted in a splash water proof housing and can be used for inset as well as for surface mounting.

The potentiometer needs a supply of 230 VAC , and gives a stepless output signal of $0-10$ VDC or $0-20 \mathrm{~mA}$ and PWM between voltage Vmin and voltage Vmax. Position 0 is the off-position. The load cannot be lower than $2 \mathrm{k} \Omega(\mathrm{RL} \geq 2 \mathrm{k} \Omega)$ in $0-10 \mathrm{~V}$ output mode or higher than 500Ω if $0-20 \mathrm{~mA}$ output is selected.

Inset mounting (IP 44)
Break mains voltage. Connect according to diagram. Mount the inner case to the wall with the connections pointing down. Mount cover with nut to the wall. Push knob in place at off
position.
Surface mounting (IP 54)
Break mains voltage. Mount surface mounting case to the wall together with included grommets. Connect according to diagram. Mount inner case in surface mounting case with included screws. Mount cover with nut to surface mounting case. Push knob in place at off position. When needed a 5 mm hole for condensation water is to be drilled at the bottom of the surface mounting case.

Wiring (see previous page)

Transport and stock keeping
Avoid shocks and extreme conditions, stock in original packing.
Warranty

Two years from delivery date against defects in manufacturing. Any modifications or alterations to the product relieve the manufacturer of all responsibility. The manufacturer bears no
responsibility for any misprints or mistakes in this data, and modifications or improvements to the product can be made at any time after date of publication.

Maintenance

In normal conditions the controllers are maintenance-free. If soiled clean with dry or damp cloth. In case of heavy pollution clean with a non-aggressive product. In these circumstances
the controller should be disconnected from the mains. Pay attention that no fluids enter the controller. Only reconnect the controller to the mains when it is completely dry.

All works may only be carried out by skilled personnel following the local regulations, reference to the installation guide and AFTER the controller is completely separated from the mains

SDXV - Power Supply for Sensors \& Switches 230VAC to 24VDC

Features

- Input voltage: $195-265 \mathrm{Vac}$ at $50 / 60$ Hz
- Short circuit protection
- Over current protection: 120-150 \% of rated current
- Automatic recovery after fault condition is removed
- Voltage tolerance: $\pm 2 \%$
- Load regulation: $\pm 2 \%$
- Cooling type: free air convection
- DIN rail mounting
- Power consumption: without load < 1W
- Available output voltage: 24 VAC
- Internal noise filter
- IP30 protection
- Working temperature: $0 . . .70^{\circ} \mathrm{C}$

Description

A low cost DIN rail mountable switching power supplies designed especially for use with sensors \& controls. Converting 230VAC to 24VAC 4A for safety in control circuits.

The SDVX power supply (PSU) offers a reliable power source, is short circuit protected with high efficiency and low ripple and is suitable for use with sensors, electromechanical relays, contactors, solid state relays, timers, thermal regulators, PLC's, controllers, DC motors, solenoids, displays and other types of custom electronics.

Range

Model	Description	Part
SDXV	Power Supply 230VAC to 24VAC	EA002109

Wiring Diagram

Dimensions

Amps	$W(\mathrm{~mm})$	$\mathrm{H}(\mathrm{mm})$	$\mathrm{D}(\mathrm{mm})$	Net weight (g)	Gross weight (g)
SDXV	45	101	110	230	250

Mounting Instructions
 Wiring (see diagram)

Transport and stock keeping
Avoid shocks and extreme conditions, stock in original packing.

Warranty

Two years from delivery date against defects in manufacturing. Any modifications or alterations to the product relieve the manufacturer of all responsibility. The manufacturer bears no
responsibility for any misprints or mistakes in this data, and modifications or improvements to the product can be made at any time after date of publication.

Maintenance

In normal conditions the controllers are maintenance-free. If soiled clean with dry or damp cloth. In case of heavy pollution clean with a non-aggressive product. In these circumstances
the power supply and attached equipment should be disconnected from the mains. Pay attention that no fluids enter the power supply. Only reconnect the controller to the mains when it is completely dry.

All works may only be carried out by skilled personnel following the local regulations, reference to the installation guide and AFTER the controller is completely separated from the mains.

[^0]: Warranty
 Two years from delivery date against defects in manufacturing. Any modifications or alterations to the product relieve the manufacturer of all responsibility. The manufacturer bears no responsibility for any misprints or mistakes in this data, and modifications or improvements to the product can be made at any time after date of publication.

 Maintenance
 In normal conditions the controllers are maintenance-free. If soiled clean with dry or damp cloth. In case of heavy pollution clean with a non-aggressive product. In these circumstances
 the controller should be disconnected from the mains. Pay attention that no fluids enter the controller. Only reconnect the controller to the mains when it is completely dry.

 Motor protection
 The controller has contacts for motors with thermostat (Tk) overheat protection (NC-contact). When motor overheating (or a power failure) is detected the controller stops power to the motor. The red indicator light and alarm output will signal this error condition. (Reset: main switch to off position and back).

[^1]: Warranty
 Two years from delivery date against defects in manufacturing. Any modifications or alterations to the product relieve the manufacturer of all responsibility. The manufacturer bears no responsibility for any misprints or mistakes in this data, and modifications or improvements to the product can be made at any time after date of publication.

 Maintenance
 In normal conditions the controllers are maintenance-free. If soiled clean with dry or damp cloth. In case of heavy pollution clean with a non-aggressive product. In these circumstances
 the controller should be disconnected from the mains. Pay attention that no fluids enter the controller. Only reconnect the controller to the mains when it is completely dry.

 Motor protection
 The controller has contacts for motors with thermostat (Tk) overheat protection (NC-contact). When motor overheating (or a power failure) is detected the controller stops power to the motor. The red indicator light and alarm output will signal this error condition. (Reset: main switch to off position and back).

